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ABSTRACT

Cloud Computing represents a new trend in modern computing. Since computation

can be purchased as a service, companies and individual users can cut down their com-

puting assets and outsource any burdensome computational workload. In addition to

savings in computing infrastructure, the Cloud may also provide expert technical con-

sulting. But while outsourcing computation provides appealing benefits, one must fully

consider a critical security issue: there is no guarantee on the correctness of the results.

That is, the Cloud servers should be considered error-prone and may or may not be fully

trustworthy. Thus an immediate need for result assurance naturally arises. This need

motivates a growing body of research on verification of outsourced computation. Re-

searchers strive for verifying the result of general computation, not limited to a specific

computational task. Extending classical proof systems, interactive proof (IP) systems

and probabilistically checkable proof (PCP) systems provide basic theoretical models and

meaningful tools for applications. Unfortunately, PCPs and hence arguments are wildly

impractical: traditional PCPs are too expensive to instantiate at the prover or query

from the verifier. While state-of-the-art PCP schemes are asymptotically efficient, the

constants on their running times are large, and they seem too intricate to be implemented

easily.

This dissertation focuses on the verifiable computation, taking steps towards bring-

ing it closer to practicality. We argue that since the verification may be tedious and

expensive, users are likely to outsource (again) the verification workload to a third party.

Other scenarios such as auditing and arbitrating may also require the use of third-party

verification. Outsourcing verification will introduce new security challenges. One such
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challenge is to protect the computational task and the results from the untrusted third

party verifier. In this work, we address this problem by proposing an efficient verifica-

tion outsourcing scheme. To our knowledge, this is the first solution to the verification

outsourcing problem. We show that, without using expensive fully-homomorphic en-

cryption, an honest-but-curious third party can help to verify the result of an outsourced

computational task without having to learn either the computational task or the result

thereof. We have implemented our design by combining a novel commitment proto-

col and an additive-homomorphic encryption in the argument system model. The total

cost of the verification in our design is less than the verifiers cost in the state-of-the-art

argument systems that rely only on standard cryptographic assumptions.

Besides the introduction of the verification outsourcing paradigm, we also bring im-

provements to the state-of-the-art verification protocol designs. We firstly investigate

the linearity tests, which overwhelmingly occupy the bandwidth of the interaction part

of the state-of-the-art designs based on linear PCP. Our results show that under certain

assumptions, if this Single- Commit-Multi-Decommit protocol further combines with

the linear PCP, the linearity tests in the combined linear PCP become redundant. Our

theoretical result immediately results in RIVER, a new linear-PCP-based argument sys-

tem which achieves lower cost. Then, we focus on the computations with repeated

sub-structures and design a novel verification protocol, that takes advantage of these

particular features. We notice the state of the art involve a considerable cost, includ-

ing the verifiers amortized cost, (i.e., the cost that needs to be amortized over a large

number of work instances), and the provers cost of proof generation. The most efficient

argument systems still incur an amortized cost that is linear in the size of the circuit.

We address reducing this cost for those outsourced computations which contain repeated

substructures (e.g. loops). Since loops play a pivotal role in the real world of computing

(not only compute-intensive computations but also data-intensive computations such as

big data applications), we take loops as a typical example, propose the first verification
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protocol that is specific for computations with repeated structures and show that the

circuit generated from computation with loops can indeed lead to a lower amortized cost

and a lower cost of proof generation. Using the theory of arithmetic circuit complexity

we prove that for most programs our design results in very significant savings.
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CHAPTER 1. INTRODUCTION

The surging popularity of the cloud computing paradigm has rendered a new type of

service: computation as a commodity. While using this service, companies and individual

users must no longer maintain expensive computing assets. They just outsource any

burdensome computational workload to the cloud and enjoy additional perks, like expert

technical consulting. But while outsourcing computation provides appealing benefits, one

must fully consider a critical security issue: there is no guarantee on the correctness of

the results returned by the cloud server, which may be error-prone or otherwise not

entirely trustworthy. Thus an immediate need for result assurance naturally arises.

This need motivates a growing body of research on verifiable computation, and in par-

ticular, works focused on verification protocols for general-purpose computation. Since

verifying the result of general computation can be abstracted to classical problems in the

theory of computation, such as interactive proof (IP) systems [1] and probabilistically

checkable proof (PCP) systems [2, 3], the security community naturally turned to the

model of these classical proof systems, attempting to refine theory toward implementa-

tion. In their designs, the server plays the role of a prover trying to convince the client,

who plays the role of a verifier, that the result is correct. A recent line of work strives

for verifying computation based on argument systems [4, 5, 6], a notable variant of the

PCP model. They hold a more practical assumption that, in addition to the verifier

being polynomial-time probabilistic, the prover is also computationally bounded. Break-

throughs [7, 8, 9, 10, 11, 12] in argument systems have made PCP-based approaches

more practical. Another important line of work [13, 10, 14, 15] makes attempts to adopt
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the recent finding of a new characterization of the NP complexity class – the Quadratic

Span Programs (QSPs) (and Quadratic Arithmetic Programs (QAPs)) [13]. Based on

theoretical innovations of QAP [13], a nearly practical verifiable computation system

called Pinocchio was introduced in [14].

The ultimate goal of all these methods is to ensure that the amount of verification

workload performed by the client is less than the workload of performing the same

computation from scratch. Although recent solutions show encouraging results, making

verification closer to practicality than ever, the workload of verification remains quite

expensive, especially for those cases requiring large-scale verification (such as when large

amounts of computation need to be outsourced, and then the results verified). But the

average users may not be willing to spend their valuable time and resources on verification

work, even though this new computational task is much less demanding than the original

one, and neglect verification altogether. We can hardly imagine a hand-held device user

devote CPU time and wireless bandwidth to verification.

To achieve practical verifiable computation, one direct idea is to strive for efficient

verification protocols, taking steps to pursue more practical argument systems. While

part of the work of this dissertation follows this idea, we also propose another idea

towards practical verifiable computation: verification outsoucing.

1.1 Verification for Repeated Structures

Although encouraging results have been emerging, the high costs still stymie their

practicality. In particular, the biggest performance concerns are around further reducing

the amortized cost of verification, and reducing the cost of proof generation. Zaatar [10]

and Pinocchio [14] are two representatives of the state of the art in verifiable computation.

The verification protocols in both Zaatar and Pinocchio can be viewed as argument

systems with amortizing, namely, proof systems that require a high cost for the verifier
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that needs to be amortized over a large number of work instances. In Pinocchio, the

verifier needs to publish a public key and hold a matching verification key. Both the cost

of constructing this verification key and the public key are amortized over all possible

work instances of the same circuit. In Zaatar, the verifier must invest in the expensive

construction of the commitment and all the PCP queries before he performs the actual

verification operations for each instance. This amortized cost grows linearly with the

circuit size in both Zaatar and Pinocchio, and it can be prohibitive, especially for large

circuits, which are widely used in many practical scenarios. Meanwhile, the costs of

proof generation in Zaatar and Pinocchio grow at least linearly with the circuit size.

Assuming the circuit size of the computation task is S, then the cost of proof generation

in Zaatar is asymptotically O(S · log2(S)) and the cost of proof generation in Pinocchio

is asymptotically O(S).

From a theoretical perspective, one natural question is whether it is possible to have

sub-linear time (in the size of the circuit) amortized cost and cost of proof generation. To

the best of our knowledge, this remains an open question. From a practical perspective,

the first requirement is to further reduce both amortized cost and cost of proof generation,

which act as chief obstacles in verifiable computation.

To tackle these problems, instead of merely focusing on optimizing current verification

algorithms regardless of the structure of the computation tasks, like in most recent works,

in this dissertation we take into account the structure of the circuit based on which the

computation tasks are verified.

We observe that repeated structures play a pivotal role in the arithmetic circuit based

on which verification protocol is performed. The compilers of Zaatar and Pinocchio

analyze any high-level program piece by piece and generate the corresponding circuit in

a straightforward way: for instance, loops are unrolled in a naive way. We notice that

almost every computation (e.g. Big Data!) employs loops. Moreover, these computations

are the most likely tasks to be outsourced to the cloud server. Repeated structures show
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up frequently in the circuit generated by Zaatar’s and Pinocchio’s compilers. Meanwhile,

vnTinyRAM universally transforms any C program with fixed number of execution steps

into one single arithmetic circuit, which also contains lots of repeated subcircuits such

as Cmem, Cexe and the multiplexers in the Waksman networks [16].

Repeated structures (e.g. looping structures) are not well addressed in the current

research on verification protocols. As observed in [9, 12], looping can not be handled

concisely. Hence, if we can take advantage of repeated structures in the circuits of these

computations and handle the verification better, we could make verifiable computation

more efficient.

Since we use terminology of loop extensively in this dissertation, we formalize it here.

In this dissertation, the loop body is the piece of code describing the executions inside

the loop. One loop iteration refers to one execution of the loop body.

In this dissertation, we address the problems proposed above, argue that verifiable

computation can be made cheaper by taking advantage of computations whose circuits

contain repeated substructures (e.g. loops), and achieve cheaper verifiable computation

through efficient loop-handling.

1.2 Linear Arguments without Linear Tests

In the line of linear-PCP fashion verifiable computation designs, once the prover

is committed to a proof, the verifier has to perform laborious linearity tests to ensure

the proof is linear. In fact, the number of queries required to perform linearity tests

dominate the number of overall queries of the protocol. Thus, the cost caused by linearity

test is still one of the bottlenecks of current protocols. Up to now, in the context of

Single-Commit-Multi-Decommit protocol, whether the linearity tests are necessary was

still an open question. In this section, we propose our theoretical result, showing that

under a particular assumption, the Single-Commit-Multi-Decommit protocol will provide
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inherent linearity testing. (Specifically, we assume that the commitment information

that the prover holds is computed by a linear function.) Thus, if linear PCP is combined

with this commitment protocol, the linearity tests are obsolete. We will adopt these

theoretical results in our verification protocol design and thus achieve cost savings.

1.3 Verification Outsourcing

In the spirit of outsourcing computation, a natural idea is to also outsource the

verification. For this purpose, the client may delegate the verification to a third party –

the verifier. The verifier does not need to be as powerful as the server doing the original

computation. In the pay-per-use paradigm, the client should pay the verifier far less

than the prover.

In addition to this novel verification-outsourcing paradigm, third-party verification

may benefit other, equally-important applications. For example, disputes between the

server and the client can be solved by an arbitrator who plays the role of the third-

party verifier. Similar verifications may be required by government agencies, nonprofit

organizations, and consumer safety organization, for the purpose of quality evaluation,

project management, etc.

However, outsourcing verification is not trivial to implement. Several challenges

emerge when outsourcing verification to untrusted verifiers. One of these, and the main

focus of this dissertation, is the confidentiality concern. The results of computing are

often confidential. Moreover, in many instances, even the details of the computation

task itself may constitute sensitive material.

To the best of our knowledge, there is no feasible solution to these challenges. The

two-party verification schemes cannot be directly adopted, either. Recomputing requires

the verifier to have the same resources as the prover. If the prover provides a traditional

NP-proof, the verifier is able to verify the result with fewer resources than required to
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recompute. But he still needs to read the entire proof, which costs polynomial time in

the size of the computational task. Apart from the high cost, recomputing or checking

NP-proofs provides little defence against curious verifiers.

In IP-based or PCP-based two-party verification schemes, it is necessary for the

verifier to have perfect knowledge of the computation task and the result (in the context

of computational complexity, the verifier needs to know the instance of the problem).

If the third party simply runs the verifier’s algorithms according to these two-party

designs, the computation task and the result cannot be protected unless an expensive

fully-homomorphic encryption system (e.g. [17]) is deployed.

The challenge here is how a third party can verify the correctness of the result with-

out knowing the computation task and the result and without using expensive fully-

homomorphic encryption [17]. In this dissertation, we describe a secure third-party

confidentiality-preserving verification scheme.

Our work is related to, but different from delegation of computation to two or more

servers [18] [19] [20] [21], where multiple servers with the same computational power

compute individually and compete to convince the client to accept their results. In our

design, without performing the same computation as the prover, the third party only

needs fewer resources to verify the result from the prover.

1.4 Research Scope

In the context of verifiable computation, there are two stages: one in which the out-

souced computation task, which is a piece of code written in the form of a high-level

language (e.g. C), is transformed into an arithmetic circuit, and another in which the

actual verification protocol is performed to check that the prover correctly evaluated

the circuit generated in the first stage. The core of the first transformation stage is

a specific compiler, also known as a circuit generator. State-of-the-art compilers in-
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cludes vnTinyRAM [15, 16] and the compilers in Zaatar and Pinocchio. These compiler

techniques are beyond the scope of this dissertation, and we review these compilers for

completeness in Chapter 2. In this dissertation, we are interested in the second stage,

namely, the actual verification protocol. In the rest of the dissertation, we assume that

the underlying circuit representation has been generated using the aforementioned circuit

generators.

1.5 Innovative Claims

Our work is framed in the context of recent results from delegation of computation.

Our research will investigate completely novel paradigms, and has the potential to gen-

erate an abundance of related research. Our main innovative contributions are broadly

categorized below.

1. Our results show that computation involving loop structures can indeed lead to a

lower set-up cost namely, a set-up cost which is linear in the degree of the loop

body (i.e., the degree of the polynomial that describes the loop body), instead of

its size (i.e., the number of multiplication gates in the circuit description of the

loop body). For most programs, this results in very significant savings.

2. We investigate the linearity tests, which overwhelmingly occupy the communica-

tion of the total cost of the state-of-the-art designs based on linear PCP. Our results

show that under certain assumptions, if this Single-Commit-Multi-Decommit pro-

tocol further combines with the linear PCP, the linearity tests in the combined

linear PCP are redundant. Our theoretical result immediately results in RIVER,

a new linear-PCP-based argument system which achieves lower cost.

3. Our research shows, for the first time, that verification can be outsourced to an un-

trusted third-party, who can verify the correctness of the result without knowing the



www.manaraa.com

8

computation task and the result and without using expensive fully-homomorphic

encryption [17].

4. We propose to investigate a new paradigm: secure delegation of computation with

verification outsourcing. At the time of this research, we are not aware of any

results on “delegation of verification”. In fact, we are the first to ever discuss the

idea of multiple outsourcing in the context of delegation of computation.
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CHAPTER 2. RELATED WORK

Extensive research has been motivated by the problem of verifying computation,

However, much of the prior work focuses on specific problems and exploits properties of

these problems for efficient verification. [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50].

Meanwhile, more work strives for verifying the result of general computation. Verifying

the result of general computation can be viewed as originating from similar but more

abstract problems in the theory of computation, such as interactive proof (IP) systems

[1] and probabilistically checkable proof (PCP) systems [2, 3]. Early results [23, 2, 3, 19,

25, 25, 5, 6, 26] were viewed as important findings only in theoretical computer science.

The current focus is on the efficiency [27, 28], length [27, 29, 30, 31] and soundness error

[32, 33, 34, 35] of PCPs. Until recently, the security community has been extending and

refining classical proof systems, attempting to make theoretical cryptographic protocols

practical.

Extending provides basic theoretical models and meaningful tools for applications.

Existing verifiable computation schemes fall into three broad categories. The first line

of verifiable computation systems [8, 9, 10] is based on the IKO argument system which

is first proposed by Ishai et al. [7]. In these systems, the proof for the result correctness

is formulated into a linear PCP with a commitment which is constructed in the pre-

processing phase. This line of work made PCP-based approaches more practical– very

efficient if batching over a large number of computation instances, while requiring only

standard cryptographic assumptions.

Parno et al. start another line of work [10, 14, 15] which is based on the recent finding
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of a new characterization of the NP complexity class –QSPs/QAPs [13], such as Pinoc-

chio, which supports public verifiability and zero-knowledge. Similarly, by compiling

programs to an innovative circuit representation [51], Ben-Sasson et al. provides another

publicly verifiable and zero-knowledge scheme BCGTV [15, 16]. Our work inherits the

property of the linear-PCP style designs and does not provide zero-knowledge, either.

Motivated by the delegation of computation (GKR [52]), IP systems provides the

third line of work to assure the client that an untrusted prover has actually performed

the correct computation (CRR [21], CMT [53]). In this line of work, Thaler also finds that

circuits that satisfy a specific condition can have much lower cost on the pre-processing

stage [54]. However, their circuits need to satisfy either a so-called “regular” wiring pat-

tern condition or the “data-parallel” structure requirement (namely, a sub-computation

is applied independently to different pieces of data). Besides, Thaler’s work still has

verifier’s cost linear in the size of the circuit. All GKR-style systems typically require

far more interaction, introducing much more bandwidth costs.

As an interesting hybrid-architecture protocol, Allspice [12] integrates both Zaatar

and CMT in such a way that it automatically determines which one would be more

efficient to verify the computation and runs the better of the two. Another study [55]

has been pursuing argument systems that avoid a pre-processing phase for the verifier.

Those argument systems are based on short PCPs, and existing work on this topic is

still only theoretical.

Since state-of-the-art verification protocols are based on arithmetic circuits, the com-

piler which transforms the outsource task (typically a program written in high level

languages such as C) into a circuit representation plays a very important role in this

area. Zaatar’s and Pinocchio’s compilers map a large class of computations into corre-

sponding arithmetic circuits, using special-purpose encodings. Another line of compilers,

TinyRAM [15] and vnTinyRAM [16], use an innovative technique [51] and compile gen-

eral C programs that have the same number of steps of executions to one same circuit.
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This compiler has better performance for programs consisting of lots of memory ac-

cesses and control flow than Zaatar’s and Pinocchio’s, while the compilers of Zaatar and

Pinocchio do better in programs which are close to “circuit” forms [16]. Walfish et al.

evaluate these compilers in [56] and claim TinyRAM’s circuit representation is orders of

magnitude larger than the representation in Pinocchio and Zaatar.
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CHAPTER 3. PRELIMINARIES

This is the opening chapter to my thesis which explains in general terms the concepts

and assumptions which will be used in my thesis.

3.1 Probabilistically Checkable Proofs (PCPs)

In the PCP model, the verifier, a probabilistic polynomial-time (PPT) algorithm V

can be convinced by a prover P that a string x belongs to a language L in an interactive

way: V has random access to the proof π which is constructed by P . By querying π

(accessing the proof and reading several values), V will either accept or reject.

Correctness: If x ∈ L, P can always construct a proof π such that V will accept that

x ∈ L. We call π the correct proof for x.

Soundness: If x 6∈ L then for any π, the probability that V wrongly accepts is less

than a constant ε. Let L be any language. The PCP theorem [22] [3] [2] [23] [24]

guarantees that, if L ∈ NP , then with only a constant number of queries, V can verify

x ∈ L with negligible error probability (soundness).

Early results of PCP [23] [2] [3] [19] [25] [25] [5] [6] [26] were viewed as important

discoveries only in the theory of computational complexity. Recent research focuses on

the efficiency [27] [28], length [27] [29] [30] [24] [31] or soundness error [32] [33] [34] [35]

of PCPs.
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3.2 Homomorphic Encryption

The commitment protocols of existing efficient argument systems are all based on ho-

momorphic encryption. This homomorphic encryption does not refer to fully-homomorphic

encryption [17]. Only additive homomorphism is used in current argument systems:

that is, the ciphertext of the result of adding two plaintexts can be efficiently com-

puted from the ciphertexts of the two plaintexts. Formally, for any valid ciphertexts

c1 = Enc(pk,m1) and c2 = Enc(pk,m2), there is an efficient algorithm H such that

H(c1, c2) = Enc (pk,m1 + m2), where pk is the public key and m1,m2 are plaintexts.

In general this does not mean Enc(m1 + m2) = Enc(m1) + Enc(m2), and it is generally

not feasible to have this relation without compromising security. In this dissertation, the

underlying homomorphic encryption is assumed to be semantically secure [36].

3.3 Arguments

Arguments [4] are interactive proof systems, consisting of two PPT algorithms: the

prover P and the verifier V . For an NP language L with soundness error ε(·), an argument

is both complete and sound if it satisfies the following conditions: (a) Completeness: for

any x ∈ L and corresponding NP witness w, the interaction between V(x) and P(x,w)

leads V to accept the proof as true. (b) Soundness: for any x /∈ L, and any efficient

prover P∗, the interaction between V(x) and P∗(x) leads V to accept the proof with

probability less than ε(|x|).

3.4 Efficient Arguments without Short PCPs

To make argument systems efficient, current implementations rely on PCPs. However,

PCP algorithms assume that the proof is computed by the prover, and fixed before the

interaction with the verifier begins. The same assumption cannot be made in the context

of argument systems. To bridge the gap between arguments and PCPs, an additional
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protocol is required, in which the prover commits to the proof before starting the PCP

protocol with the verifier. Consequently, an argument is generally formed by joining

together two protocols: a PCP and a commitment. Since the commitment protocol

should maintain the efficiency of the argument, it is generally not feasible to require P

to send the entire PCP proof to V due to the length of the proof. Two solutions can

be implemented to overcome this obstacle: (1) make the PCP proof short, and (2) use

cryptographic techniques to enable even shorter commitments to these short proofs. One

of the first efforts in the latter direction is that of [26], which proposed to use a Merkle

hash-tree construction to enable the prover to efficiently commit to the proof. Implicitly,

the security of the protocol is bound to the security of the underlying hash function.

To avoid the need for convoluted short PCP proofs, as well as the uncertain security of

practical hashing primitives, [7] takes a new approach to argument systems: maintain a

large (exponential-size) proof, and base the commitment on (computationally) provably-

secure encryption primitives – public-key primitives.

The protocols of [7] are restricted to linear PCPs ([23], Section6). It is shown how SAT

problems ( Propositional Satisfiability Problems), formulated in the context of a boolean

circuit, can be readily addressed by a simple linear PCP [7]. To form the argument

system, [7] complemented the linear PCP with the notion of commitment with linear

decommitment, which is instantiated with a simple public-key-based protocol. Since our

work is closely related to that of [7], we will provide both the definition of commitment

with linear decommitment, and a brief sketch of its instantiation in this section.

Definition 1. Commitment with Linear Decommitment ([7]) A commitment with linear

decommitment (in the context of argument systems) is a protocol between the prover P

and verifier V – both modeled as interactive PPT algorithms – consisting of a commitment

phase, and a decommitment phase, and aiming to securely commit the prover to a linear

function fd : Fn → F expressed as fd(z) = 〈d, z〉, where d, z ∈ Fn, and 〈d, z〉 is the natural

inner (dot) product over vector spaces. In the commitment phase, an environment E gives
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P inputs d and F, and gives V inputs F and the arity n. The interaction between P and

V results in decommitment information zP and zV , respectively. In the decommitment

phase, E gives P a decommitment query q ∈ Fn. After further interaction between P and

V, the verifier V outputs either a value a ∈ F, or the symbol ⊥ (reject).

A commitment with linear decommitment has the following properties. (a) Correct-

ness: for any n and E generating d, q, at the end of the decommitment phase, the verifier

outputs a = fd(q). (b) Binding: for the same decommitment information zP , zV (obtained

after the commitment phase) and environment inputs q in the decommitment phase, the

probability that at the end of the protocol the verifier outputs two different values (a1, a2)

is negligible in n.

Ishai et al. [7] took L as the satisfiability problem over an arithmetic circuit to

show how to construct a correct proof for any arithmetic circuit and how to verify this

circuit is satisfiable. Since this problem is NP-complete, every other NP problems can

be deterministically and efficiently reduced to it. The PCP theorem guarantees that, if

L ∈ NP then with only constant number of queries, V can verify x ∈ L with negligible

error probability (soundness).

The instance x is an arithmetic circuit in this problem. For x ∈ L, there is a correct

assignment z of the inputs to all gates in x. z can be also viewed as values of both the

input of x and intermediate results. The correct proof is an exponential size PCP, which

consists of two substrings. Each of the substrings can be viewed as a linear function:

π(1) : Fn 7→ F and π(2) : Fn2 7→ F where n is the length of a correct assignment z,

π(1)(·) = 〈z, ·〉 and π(2)(·) = 〈z ⊗ z, ·〉. Here, 〈u, v〉 denotes the inner product of two

vectors u and v, and u⊗ v denotes the outer product of two vectors u and v. The outer

product is equivalent to a matrix multiplication uvT , provided that u and v are both

represented as a column vector. The whole proof string can be viewed as one single linear

function π : Fn2+n 7→ F such that π(·) = 〈z||z ⊗ z, ·〉 where z||z ⊗ z is the concatenation

of the two vectors z and z⊗z. When V sends the query q to π, he will get back π(q). For
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Table 3.1 Commitment Protocol of IKO [7]

Prover’s Input: a vector d ∈ Fn2+n,

a linear function π : Fn2+n → F where π(q) = 〈q, d〉.
Verifier’s Input: arity n2 + n, a PCP query q,
security parameter k for the homomorphic encryption.
Commitment Phase
Step 1: Verifier generates the key pair (pk, sk)← Gen(1k).

Verifier randomly generates a vector r ∈R Fn2+n,
r = (r1, r2, · · · , rn2+n), ri ∈ F, i ∈ [n2 + n].
Verifier encrypts each entry of the vector r using pk.
He sends to the prover:
Enc(pk, r1), · · · , Enc(pk, rn2+n) and pk.
Step 2: Prover makes use of the homomorphism of Enc
and gets e = Enc(pk, 〈r, d〉). Prover sends e to Verifier.
Step 3: Verifier decrypts e and gets s = 〈r, d〉 = Dec(sk, e).
(s, r) will be kept for future decommitment.
Decommitment Phase
Step 4: Verifier picks at random a secret α ∈R F.
Step 5: Verifier sends q, r + αq to the prover.
Step 6: Prover responds with 2 values that are in F:
(a, b) where a is supposed to be π(q)
and b is supposed to be π(r + αq).
Step 7: Verifier will determine whether b = s+ αa.
If it holds, the verifier will accept and output a;
otherwise it will reject and output ⊥.

q ∈ Fn, π(q) = 〈z||z⊗ z, q||0n2〉 = 〈z, q〉. For q ∈ Fn2
, π(q) = 〈z||z⊗ z, 0n||q〉 = 〈z⊗ z, q〉.

For q ∈ Fn2+n, π(q) = 〈z||z ⊗ z, q〉.

As in Table 3.1, the commitment protocol was designed in [7], where a commitment

to a proof is constructed and V can verify that the proof is indeed a linear function.

Once the proof is committed, V will check the proof in the linear PCP fashion. The

verification consists of three kinds of tests. The first is the linearity test. V picks at

random q1, q2 ∈ Fn and verifies π(q1) + π(q2) = π(q1 + q2). The second is the quadratic

consistency test. V picks at random q3, q4 ∈ Fn and verifies π(q3) ·π(q4) = π(q3⊗q4). The

third is the circuit correctness test. Each gate implies a constraint. For each constraint

fu, (u = 1, 2, · · ·n), V picks at random a weight δu and constructs the weighted sum
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∑n
u=1 δufu. The sum can be rewritten as π(q5) + c = 0, c ∈ F. If each constraint is

satisfied, the weighted sum of the constraints π(q5) + c = 0 is also satisfied. If there are

some constrains not satisfied, the probability that the π(q5) + c = 0 is 1/|F|. All these

tests can be performed several times to drive the error probability down.

If we view the proof to be a function, then these commitment protocols ensure that

once the prover commits to a certain function, later the answers to the verifier’s queries

are bounded to this function. However, it is not clear whether this function is linear.

Since the correctness and soundness of all the linear PCP based argument systems–

Pepper [8], Ginger [37], and Zaatar [10]– hold on the assumption that the committed

proof is linear, mandatory tests for linearity have to be performed before genuinely

checking whether the proof assures the correctness of the returned results. In the so-

called linearity tests, the verifier picks at random queries q1 and q2, and verifies π(q1) +

π(q2) = π(q1 + q2), where π(·) is the committed function. It is pretty clear that if

π(·) is linear, the equation must hold; if π(·) is not linear (viewed as being δ-close to a

linear function) , the verifier will miss the non-linear part of π(·) with only a certain error

probability. This test can be performed several times to drive the error probability down.

A typical usage of linearity tests can be found in the first and the fourth steps of Zaatar

as shown in Table 3.1, where V queries P with q5, q6, q7 where q7 = q5 + q6, and q8, q9, q10

where q10 = q8 + q9, expecting that the following holds: πW (q7) = πW (q6) + πW (q5) and

πW (q10) = πW (q9) + πW (q8).

To make the test “smooth”, a mechanism of self-correction is needed. It is the mech-

anism of self-correction that, conditioned on a proof being δ-close to a linear function,

allows the calculation of the soundness for the argument systems. The mechanism is,

when querying π(·) with query q, the verifier actually queries with q0 and q0 + q instead

of a single query q, and π(q) is computed from π(q0 + q) − π(q0). It is easy to see that

the querying process in Zaatar uses the mechanism of self-correction. For instance, in

order to get πW (qA), the verifier queries the prover with q5 and q1 = qA + q5 instead of
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qA.

3.5 Two Recent Efficient Arguments: PEPPER and GINGER

Several recent works build upon the ideas developed in [7]. Of these, [8] and [9] are the

most relevant to our work. To bring the protocol of [7] closer to practicality, [8] introduces

a new protocol called PEPPER. It first shows that large savings in both computation

and communication overhead can be achieved by expressing the SAT problem in the

format of arithmetic circuits with concise gates [8] instead of the boolean circuits of [7].

In addition, by batching together multiple queries (to the same committed function),

[8] can decommit all of them in a single commit-decommit round, rather than providing

separate decommitments for each query.

In Ishai et al.’s original commitment design [7], one query is accompanied by an

auxiliary query which is associated to a commitment. This requires many commitments,

therefore increases the overhead. In [8], one auxiliary query is made, which is a random

linear combination of all the PCP queries and the secret information that is associated

to the commitment. In this design, one decommitment can guarantee many PCP queries

are bound to the committed function. This sharply reduced the computational cost of

generating the commitment information (although remaining cost is still very high.).

The Single-Commit-Multi-Decommit design is demonstrated in Table 3.2.

Finally, by batching together multiple computations, [8] only requires a single random

commitment query r for all computations involved (rather than a different r for each

computation), hence achieving great savings in the encryption process – recall that the

query r is transmitted to the prover after it has been encrypted by the homomorphic

encryption algorithm.

Building on top of [8], additional improvements are provided in [9], in the context of

a more efficient protocol called GINGER. For example, several queries of the quadratic
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Table 3.2 The Single-Commit-Multi-Decommit Design [9]

P’s Input: a vector z ∈ Fn, a linear function π : Fn2+n 7→ F
where π(·) = 〈Z||z ⊗ z, ·〉, n is the length of a correct assignment z.
V’s Input: arity n, security parameter k of the encryption.
Commitment
Step 1: V generates the key pair: (pk, sk)← Gen(1k).

V randomly generates a vector: r = (r1, r2, · · · , rn2+n) ∈R Fn2+n.
ri ∈ F, i = 1, 2, · · · , n2 + n. V encrypts each entry of the vector r.
He sends Enc(pk, r1), · · · , Enc(pk, rn2+n) to P .
Step 2: Using the homomorphism,
P gets: e = Enc(pk, 〈r, z〉) P sends e to V .
Step 3: V decrypts e. He gets s = 〈r, z〉 = Dec(sk, e).
Decommitment
Step 1: V picks µ secrets α1, · · · , αµ ∈ F
V queries P with q1, · · · , qµ and t = r + α1q1 + · · ·+ αµqµ.
Step 2: P returns (a1, · · · , aµ, b)
where ai = π(qi) for i = 1, · · · , µ and b = π(t)
Step 3: V checks whether b = s+ α1a1 + · · ·αµaµ holds.
If so, V outputs a1, · · · , aµ.
Otherwise, he rejects and output ⊥.

correction test may be omitted [9] from the V-to-P transmission, as they can be easily

computed by the prover from the remaining quadratic correction queries.

Definition 2. A commitment to a function with multiple decommitments (CFMD)(from

[8]) A commitment to a function with multiple decommitments (CFMD) is defined by a

pair of PPT algorithms (P ,V) (a sender and receiver, which correspond to our prover

and verifier) anticipating the following experiment with an environment E. E generates

F, w and Q = (q1, · · · , qµ). The two phases are:

• Commitment phase: P has w, and P and V interact, based on their random inputs.

• Decommitment phase: E gives Q to V, and P and V interact again, based on

further random inputs. At the end, V outputs A = (a1, · · · , aµ) ∈ Fµ or ⊥.

A commitment to a function with multiple decommitments (CFMD) should satisfy

the following properties:
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• Correctness: at the end of the decommitment phase, V outputs π(qi) = 〈w, qi〉 ,

(for all i), if P is honest.

• εB-Binding:. Consider the following experiment. The environment E produces

two (possibly distinct) µ-tuples of queries: Q = (q1, · · · , qµ) and Q̂ = (q̂1, · · · , q̂µ).

V and a cheating P∗ run the commitment phase once and two independent instances

of the decommitment phase. In the two instances V presents the queries as Q and

Q̂, respectively. We say that P∗ wins if V’s outputs at the end of the respective

decommit phases are A = (a1, · · · , aµ) and Â = (â1, · · · , âµ), and for some i, j, we

have qi = q̂j but ai 6= âj. The protocol holds the εB-Binding property if for all E

and for all efficient P∗, the probability of P∗ winning is at most εB. The probability

is taken over three sets of independent randomness: the commitment phase and the

two runnings of the decommitment phase.

3.6 Quadratic Programs

Recently Gennaro, Gentry, Parno and Raykova introduced a new characterization of

the NP complexity class – the Quadratic Span Programs (QSPs) (and Quadratic Arith-

metic Programs (QAPs)) [13, 14]. They showed that NP can be defined as the set of

languages with proofs that can be efficiently verified by QSPs (or QAPs). Similarly to

PCPs – another characterization of NP, which has already been widely used to obtain

verifiable computation schemes – QSPs/QAPs are considered to be well-suited for ver-

ifiable computation and zero-knowledge schemes. One limitation of QSPs is that they

inherently compute boolean circuits. But since arithmetic circuits are more natural and

efficient in real-world computation tasks, we focus on QAPs, the counterpart of QSPs

dealing with arithmetic circuit evaluation.

Definition 1. (Quadratic Arithmetic Programs [13]) A QAP Q over field F contains

3 sets of W ′ + 1 polynomials: {Aw(t)}, {Bw(t)}, {Cw(t)}, for w ∈ {0, 1, · · · ,W ′}, and



www.manaraa.com

21

a target polynomial D(t). For function Ψ : FN 7→ FN ′, we say Q computes Ψ if the

following holds: (z1, · · · , zN+N ′) ∈ FN+N ′ is a valid assignment of Ψ’s inputs and outputs,

iff there exist coefficients zN+N ′+1, · · · , zW ′ such that D(t) divides P (t), where P (t) =(∑W ′

w=1 zw · Aw(t) + A0(t)
)
·
(∑W ′

w=1 zw · Bw(t) + B0(t)

)
−
(∑W ′

w=1 zw · Cw(t) + C0(t)
)
.

Namely, there exists a polynomial H(t) such that D(t) ·H(t) = P (t).

Given an arithmetic circuit computing function Ψ, its corresponding QAP can be

constructed by polynomial interpolation. Consider the set of circuit wires corresponding

to the inputs and outputs of the circuit, and also the outputs of all multiplication gates.

Each one of these wires is assigned three interpolation polynomials in Lagrange form,

encoding whether the wire is a left input, right input, or output of each multiplication

gate [13, 14]. The resulting set of polynomials is a complete description of the original

circuit.

3.7 A Recent Efficient Argument System: Zaatar

The very recent work of [38] observes that QAPs can also be viewed as linear PCPs.

By re-designing the PCP query generation and replacing the quadratic consistency checks

and circuit correctness checks with the divisibility check of a QAP, Setty et al. suc-

cessfully fit QAPs into the framework of Ginger [9]. The result is the novel proto-

col Zaatar, which significantly reduces the prover’s workload. The key observation of

Zaatar is that the evaluation of the polynomial P (t) at the point t = τ can be sim-

ply written as: P (τ) = (〈Z, q〉 + A0(τ)) · (〈Z, q′〉 + B0(τ)) − (〈Z, q′′〉 + C0(τ)), where

Z = (z1, z2, · · · , zW ′), q = (A1(τ), A2(τ), · · · , AW ′(τ)), q′ = (B1(τ), B2(τ), · · · , BW ′(τ)),

and q′′ = (C1(τ), · · · , CW ′(τ)). Thus, P (τ) can be evaluated through three standard

PCP queries to the dot product oracle πZ(·) = 〈Z, ·〉. If we represent the polynomi-

als H(t) explicitly: H(t) = h|CZ |t
|CZ | + · · · + h1t + h0 (where CZ is the set of con-

straints in Zaatar), similar observations on H(τ) can be made: H(τ) = 〈KH , qH〉 where
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V queries an oracle πR(·) = 〈R, ·〉, where R = (zN+N′+1, · · · , zW ′ ) is the intermediate results of the circuit compu-
tation.

–loop ρ times from 0 to 4:

0. Linearity queries generation. V selects q5, q6 ∈ FW ′−(N+N′) and q8, q9 ∈ F|CZ |+1. He takes q7 ←
q5 + q6 and q10 ← q8 + q9. Perform ρlin iterations in total.
1. QAP queries generation. V selects τ ∈ F and takes qH ← (1, τ, τ2, · · · , τ |CZ |), and q4 ← qH + q8 and:

• qA ← (A(W ′)(τ), A(W ′−1)(τ), · · · , A(N+N′+1)(τ)), and q1 ← (qa + q5).

• qB ← (B(W ′)(τ), B(W ′−1)(τ), · · · , B(N+N′+1)(τ)), and q2 ← (qb + q5).

• qC ← (C(W ′)(τ), C(W ′−1)(τ), · · · , C(N+N′+1)(τ)), and q3 ← (qc + q5).

2. Querying πR. V sends out q1, q2, · · · , q4+6ρ and gets back πR(q1), πR(q2), · · · , πR(q4+6ρ).
3. Linearity tests. Check whether following holds: πR(q7) = πR(q6) + πR(q5), πR(q10) = πR(q9) + πR(q8)
and likewise for all other ρ− 1 iterations. If not, reject.

4. Divisibility test. V takes: Aτ = (πR(q1) − πR(q5) +
PN+N′

w=1 zw · Aw(τ) + A0(τ)), Bτ = (πR(q2) −
πR(q5) +

PN+N′

w=1 zw ·Bw(τ) +B0(τ)), Cτ = (πR(q3)− πR(q5) +
PN+N′

w=1 zw ·Cw(τ) +C0(τ)), and V checks
whether the following equation holds: D(τ) · (πH(q4)− πH(q8)) = Aτ ·Bτ − Cτ . If not, reject.

–If V makes it here, accept.

Figure 3.1 Zaatar’s linear PCP based on QAPs

KH = (h0, h1, · · · , h|CZ |) and qH = (1, τ, τ 2, · · · , τ |CZ |). Thus, H(τ) can also be evalu-

ated through one PCP query to the oracle πH(·) = 〈KH , ·〉. If Z consists of the input

X with width |X| = N , output Y with width |Y | = N ′ and intermediate results R with

|R| = W ′ − (N +N ′), then in order to guarantee that Y is the correct output when the

input is X, the verifier needs to compute a part of 〈Z, q〉, and also a part of 〈Z, q′〉 and

〈Z, q′′〉, by himself. Consequently, V only queries the linear function oracle πR(·) = 〈R, ·〉,

instead of πZ(·). The detailed design (for one execution) of Zaatar is given in Figure

3.11.

1Note that the commitment/decommitment part is omitted for simplicity in Figure 3.1. Zaatar
inherits the single-commit-multi-decommit protocol from Ginger [9].
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CHAPTER 4. DELEGATION OF COMPUTATION WITH

VERIFICATION OUTSOURCING: CURIOUS VERIFIERS

4.1 Problem Statement

4.1.1 System Model

In the context of cloud computing, we propose a computation architecture involving

three different parties: the client C, who is computationally weak, has computation

tasks to be delegated to the cloud; the cloud server P , who is computationally powerful,

provides computing services to the client; the verifier V , who is not required to be

computationally powerful, provides verification services, helping C to check the results

computed by P . P also plays the role of the prover that attempts to convince C (through

V) that the result is correct.

The computation tasks are formalized into the arithmetic circuit satisfiability problem

– i.e., the Circuit-SAT problem over an arithmetic circuit. This problem is NP-complete,

hence any other NP problem can be deterministically and efficiently reduced to it. The

reason we choose this arithmetic circuit version instead of the original Boolean Circuit-

SAT is that most real-world computation tasks can be easily mapped to arithmetic

circuits. Let x be a single-output, n-gate arithmetic circuit (n includes the input gates

and the output gate). In the language of computational complexity, we can consider x

as an instance of the arithmetic circuit satisfiability problem. Formally, x ∈ L where L

is the language of the arithmetic circuit satisfiability problem. If x is satisfiable for a

given output value E ∈ F, then there exists an input y of length |y| = m to the circuit
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x, which results in the circuit outputting E. This translates into a correct assignment

z of the set of the outputs of all the gates in x. The assignment z can be in fact the

concatenation of the input y with all the intermediate results inside the circuit, and has

length |z| = n.

C is providing P with an output E ∈ F, and expects P to return the input y which

makes the circuit output E.

4.1.2 Threat Model

The threats faced by a client in our outsourced verification scenario come from ma-

licious behaviors of both the prover P and the verifier V . We assume P and V do not

collude. This assumption is commonly used in multi-prover scenarios [18] [19] [20] [21].

Similar to previous proof systems, P can provide wrong responses to any queries, trying

to cheat C. In this chapter, we only address the problem caused by an “honest-but-

curious” V – one that is interested in learning the computation task and/or the result,

but performs the protocol faithfully. Different attack models such as dishonest V will be

addressed in future work.

We need to point out that in all of our schemes we omit the authentication part,

since authentication is a mature technology and it is not within the scope of our work.

In our context, we assume that all parties are appropriately authenticated.

4.1.3 Design Goals

First of all, our proposed scheme should provide defense against the curious veri-

fier V under the aforementioned model. To enable correct and efficient outsourcing of

verification, the proposed scheme should satisfy the following requirements:

• Correctness: If y is the correct result, P can always construct a proof and convince

the client C and the verifier V of the correctness of y.
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• Soundness: If y is not the correct result, then for any proofs provided by a malicious

P∗, the probability that V wrongly accepts is negligibly small.

• Efficiency: The overall workload for the client C should be less – in an amortized

sense (we will detail it later in Section 4.4) – than performing the verification him-

self. The workload for the verifier V should be comparable to that for verification

in current two-parties designs [7, 8, 9]. Naturally, the workload for V should be far

less than recomputing the result from scratch.

4.2 Basic Scheme: Verification Without Circuit Information

We present a basic version of our protocol in this section. We then bootstrap the

process to develop the full solution in next section. In this basic scheme, the client

C delegates the verification task to the verifier V and V can verify the proof without

knowing the computational task, i.e., the underlying arithmetic circuit x. Our basic

scheme is designed by joining together two protocols: a novel linear PCP and a new

commitment protocol. Recall that PCP systems assume the proof is computed by P ,

and fixed before the interaction with the V begins. The same assumption cannot be

made in Cloud Computing. For efficiency reasons, it is also not feasible to require P

to send the entire PCP proof to V . It is the commitment protocol that guarantees P

commits to the proof before starting the PCP protocol with V .

4.2.1 A Building Block: A New Commitment Protocol

In the context of Circuit-SAT problem over an arithmetic circuit, we propose the

following new commitment protocol for linear PCP system. It is a two-party protocol

between the prover P and another party denoted by C/V (as in “client/verifier”). We

do not differentiate between the client C and the verifier V in this subsection. This

separation will be done in next subsection. Recall that the Circuit-SAT problem is to
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Table 4.1 Comparison of Commitment Protocols

Ishai et al. [7] GINGER [9] Our Basic Commitment Scheme

Commitment Phase Commitment Phase Commitment Phase
Prover’s Input: a vector d ∈

Fn
2+n, a linear function π :

Fn
2+n → F where π(q) =

〈q, d〉.

Prover’s Input: z ∈ Fn, a lin-

ear function π : Fn
2+n 7→ F

where π(·) = 〈z||z ⊗ z, ·〉.

Prover’s Input: a vector z ∈ Fn, a linear function

π : Fn
2+n 7→ F where π(·) = 〈z||z ⊗ z, ·〉, n is the

length of a correct assignment z.

Verifier’s Input: arity n2 +

n, security parameter k for the

homomorphic encryption.

Verifier’s Input: arity n, se-

curity parameter k of the en-

cryption.

Verifier’s Input: arity n, security parameter k of

the encryption, the circuit x, the circuit’s input y =

(y1, · · · , ym) and output E.
Step 1: V generates the key

pair (pk, sk) ← Gen(1k) and

r = (r1, · · · , rn2+n) ∈R

Fn
2+n, ri ∈ F, i =

1, · · · , n2 + n. V encrypts

each entry of r and sends

Enc(pk, r1), · · · , Enc(pk, r
n2+n)

to P.

Step 1: V generates the key

pair (pk, sk) ← Gen(1k) and

r = (r1, · · · , rn2+n) ∈R

Fn
2+n. ri ∈ F,

i = 1, · · · , n2 + n. V encrypts

each entry of r and sends

Enc(pk, r1), · · · , Enc(pk, r
n2+n)

to P.

Step 1: C/V randomly picks r0 ∈ Fn and R0 ∈

Fn
2

and constructs the corresponding commitments

(s0, S0) according to Ishai et al.’s commitment pro-

tocol [7].

Step 2: P makes use of the

homomorphism of Enc and gets

e = Enc(pk, 〈r, d〉). P sends e

to V.

Step 2: Using the homo-

morphism, P gets: e =

Enc(pk, 〈r, z〉) and sends it to

V.

Step 2: C/V randomly generates an n-dimension

weight vector w0 = (w01, w02, . . . , w0n) ∈ Fn,

where each entry corresponds to a constraint fu

(u = 1, · · · , n) of the arithmetic circuit x. C/V

multiplies each constraint fu of the circuit by w0u,

u = 1, · · · , n and constructs their summation as

nP
u=1

w0ufu =
mP
u=1

w0uyu + w0nE. The summation

of all these weighted constraints can be rewritten as

〈R1, z ⊗ z〉 + 〈r1, z〉 = c0, where c0 =
mP
u=1

yuw0u +

w0nE.
Step 3: V decrypts e and gets

s = 〈r, d〉 = Dec(sk, e). (s, r)

will be kept for decommitment.

Step 3: V receives e. He gets

s = 〈r, z〉 = Dec(sk, e). (s, r)

will be kept for decommitment.

Step 3: Using R1 and r1, C/V constructs the corre-

sponding commitments (s1, S1) according to Ishai’s

commitment protocol [7].

Decommitment Phase Decommitment Phase Decommitment Phase
Prover’s Input: d, π Prover’s Input: z, π, n Prover’s Input: x, z including y and E, π, n.

Verifier’s Input: arity n2+n,

a PCP query q, decommitment

information (r, s).

Verifier’s Input: arity n, µ

PCP queries q1, · · · , qµ, de-

commitment information (r, s).

Verifier’s Input: n, µ PCP queries

q1, · · · , qµ, decommitment information

(w0, r0, R0, r1, R1, s0, S0, s1, S1).
Step 4: V picks at random a

secret α ∈R F.

Step 4: V picks µ secrets

α1, · · · , αµ ∈ F

Step 4: C/V generates randomly an n-dimension

weight vector w1 = (w11, . . . , w1n) ∈ Fn and a secret

α1 ∈ F.
Step 5: V sends q, r + αq to

the prover.

Step 5: V queries P with

q1, · · · , qµ and t = r +

µP
i=1

αiqi.

Step 5: C/V queries P with vector w1 and w2 =

w0 + α1w1.

Step 6: P responds with 2 val-

ues that are in F : (a, b) where

a is supposed to be π(q) and b

is supposed to be π(r + αq).

Step 6: P returns µ + 1

values: (a1, · · · , aµ, b) where

ai = π(qi) for i = 1, · · · , µ

and b = π(t)

Step 6: From w1, P constructs the weighted summa-

tion of all constraints just like what C/V does in Step

2 and gets 〈Q0, z ⊗ z〉 + 〈q0, z〉 =
Pm
u=1 yuw1u +

w1nE. From it, P learns Q0 and q0 and returns:

A1 = 〈Q0, z ⊗ z〉 and a1 = 〈q0, z〉. Similarly, from

w2, P constructs the weighted summation 〈T1, z ⊗

z〉 + 〈t1, z〉 =
Pm
u=1 yuw2u + w2nE and learns T1

and t1. P returns: B1 = 〈T1, z⊗z〉 and b1 = 〈t1, z〉.
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Table 4.1 (Continued)

Comparison of Commitment Protocols

Ishai et al. [7] GINGER [9] Our Basic Commitment Scheme

Step 7: V will determine

whether b = s+αa. If it holds,

the V will accept and output a;

otherwise it will reject and out-

put ⊥.

Step 7: V checks whether b =

s+α1a1+· · ·αµaµ holds. If so,

V outputs a1, · · · , aµ. Other-

wise, he rejects and output ⊥.

Step 7: C/V checks whether b1 = s1 + α1a1 and

B1 = S1 + α1A1. If both hold, C/V goes on to Step

8. Otherwise, C/V rejects the proof.

Step 8: C/V randomly generates α0, α1, · · · , αµ

from F. C/V constructs t = (r1||R1) + α0(r0||R0) +Pµ
k=1 αkqk.

Step 9: C/V queries P with q1, · · · , qµ and t.
Step 10: P returns µ + 1 corresponding answers

(a1, · · · , aµ, b2) where for k = 1, 2, · · ·µ, ak =

〈qk, z||z ⊗ z〉 and b2 = 〈t, z||z ⊗ z〉.
Step 11: C/V checks whether b2 = (s1+S1+α0(s0+

S0)) +
Pµ
k=1 αkak holds. If so, C/V accepts. Other-

wise C/V rejects.

find an input y = (y1, y2, · · · , ym) which makes the circuit x output a given value E. The

arithmetic circuit x consists of n = |x| arithmetic gates. Each gate implies a constraint

fu, 1 ≤ u ≤ n as follows:

• fu(zu) = zu for 1 ≤ u ≤ m. These are the constraints for the input gates.

• fu(zi, zj, zk) = 0 for m+1 ≤ u ≤ n−1, where fu is a linear or quadratic polynomial

of zi, zj, zk. Here zi, zj, zk are the two inputs and one output of a certain gate of x.

• fn(zn) = E. This is the constraint for the output gate.

Our commitment protocol rearranges the argument system to put the circuit-dependent

portions inside the commitment phase (the offline stage). This approach not only simpli-

fies the client/verifier’s operation on the verification side, but also provides circuit-secrecy

against the verifiers while outsourcing the verification tasks.

Our commitment protocol is demonstrated in the third column of Table 4.1.3. This

protocol eventually includes two decommitment processes, one is from Step 4 to Step 7,

the other is from Step 8 to Step 11.

We will prove that after the commitment construction phase, all of P ’s answers to

later queries that pass both the decommitment checks are guaranteed to be bound to
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one single function (from queries to answers) with high probability. That is, having com-

mitted, P is very likely incapable of cheating the verifiers with fake answers. Moreover,

this function is guaranteed to be linear with high probability.

Theorem 1. (Main Theorem) For our commitment protocol, the following holds. For

any environment E, for any query q in either of the decommitment phases, the corre-

sponding answer accepted by V at the end of the protocol is guaranteed to be the function

value π̃(q) except with probability less than 1
|F| + neg(n), where π̃(q) is a fixed function,

neg(n) is a negligible function, and the probability is over all randomness of P∗ and V

in all phases.

We prove this theorem in Section 4.5.

4.2.2 A Delegation-of-Verification Scheme with Partial Circuit Confidential-

ity

As in the context of cloud computing, C sends the circuit description x to P . After

finding out the solution y with his powerful computation ability, P returns y to C. Before

outsourcing the verification task, C constructs the commitment according to our basic

commitment scheme. C plays the role of C/V in that commitment construction protocol

and gets: w0, r1, R1, r0, R0, s1, S1, s0 S0. The decommitment phases are a little bit

different from our basic commitment scheme. C generates a random value α0 ∈ F and

computes (r1||R1) +α0(r0||R0). Then, C outsources the verification task to a third party

V . C sends w0, (r1||R1)+α0(r0||R0), s1, S1, s1+S1+α0(s0+S0), E, and yi’s (i = 1, · · ·m)

to V . Later, V will perform the decommitment.

For the linearity test, the idea is to check whether y(x1), y(x2), y(x1+x2) (the answers

to random queries x1, x2 and corresponding x1 + x2) satisfy y(x1) + y(x2) = y(x1 + x2).

This is detailed in [8],we omit it here.

For the circuit test, V generates w1 and w2 as in Step 4 and Step 5 of our basic

commitment scheme. As in Step 5 and Step 6, V queries P with w1 and w2, receives
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back A1, a1, B1 and b1. Then V checks the equations as in Step 7. V will also check the

circuit correctness, i.e., whether

A1 + a1 =
m∑
u=1

yuw1u + w1nE. (4.2.1)

For the quadratic consistency tests, V first conducts the second decommitment ac-

cording to Steps 8, 9, 10, 11. Here, V uses only three testing queries (that is, µ = 3)

and the decommit query t. V randomly generates queries q2, q3 both from Fn. He ran-

domly generates α2, α3, α4, all from F. He constructs the following queries: q4 = q2⊗ q3,

and t = (r1||R1 + α0(r0||R0)) +
∑3

i=2(qi||0n
2
) + α4(0n||q4), where 0u is the u-dimension

zero vector. V queries P with (q2, q3, q4, t). P returns (a2, a3, a4, b2) where a2 = 〈q2, z〉,

a3 = 〈q3, z〉, a4 = 〈q4, z ⊗ z〉, b2 = 〈t, z ⊗ z〉. At the second decommitment, V checks

whether b2 = (s1 + S1 + α0(s0 + S0)) +
∑4

i=2 αiai. For quadratic consistency, V checks

whether a4 = a2a3.

If all the checks pass, V will instruct C to accept. Otherwise, V instructs C to reject.

4.2.3 Theoretical Analysis: Correctness and Soundness

It is easy to see that without knowing the circuit x, V conducts all the PCP checks

(except the linearity tests, since the commitment has provided linearity tests already)

for C. The correctness and soundness of this scheme follows directly from the linear

PCP scheme. However, it should be noted that V has access to the pair ((r1||R1) +

α0(r0||R0), s1 + S1 + α0(s0 + S0)), which leaks information about the circuit. Hence the

partial circuit confidentiality is afforded by this scheme. Nevertheless, building upon

this scheme, full circuit confidentiality is achieved by the full solution outlined in the

next section. Our basic scheme is also a distinct improvement over existing argument

systems. During the verification procedure, the verifier does not need to read the circuit.

He can generate all the queries with the cost of merely generating random numbers.

By comparison, to generate a query, current argument systems need to both generate

random numbers, and to calculate weighted summations of all circuit’s constraints.
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4.3 The Full Solution to Delegating Verification to a Curious

Verifier

In certain scenarios, both the computation circuit and input/output of this circuit are

sensitive. A curious verifier may be interested in information regarding the computation

task (the circuit) and/or the circuit’s input and output. In this section, we use the pre-

viously described basic scheme to develop the full solution against the curious verifier.

The full version of the protocol consists of four phases, detailed in the following sub-

sections: outsourcing computation, constructing commitments, outsourcing verification,

and making a decision.

4.3.1 Outsourcing Computation Phase

C possesses an additive homomorphic cryptosystem. He generates a key pair (SK,PK).

C sends the arithmetic circuit description x along with the public key PK to P . After

finding out the solution y with his powerful computation ability, P returns y to C. After

this computation, P obtains a correct assignment z of all the input of each gate in x.

z can be viewed as the values of both y (the input of x) and intermediate results. P

possesses a corresponding linear function: π : Fn2+n 7→ F (remember n = |x| = |z|) such

that, π(·) = 〈z||z ⊗ z, ·〉.

4.3.2 Constructing Commitments

Before outsourcing the verification task to a third party, C constructs the commitment

according to the protocol described in Table 4.1.3. At the end of the construction, C

possesses: w0, r1, R1, r0, R0, and s1, S1, s0, S0. C generates a random value α0 ∈ F and

computes (r1||R1) + α0(r0||R0). After constructing the commitment, C randomly picks

w11, w12, · · · , w1m and w1n, all in F. Let w′1 be ((w11, w12, · · · , w1m)||0n−m−1||w1n). With

these numbers, C computes c0 =
∑m

u=1w1uyu + w1nE, then randomly generates α1 and
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sends α1, s1,S1, c0, w0 + α1w
′
1, (r1||R1) + α0(r0||R0), Enc(PK, (s1 + S1 + α0(s0 + S0))),

and the public key PK to V . Meanwhile, C sends w11, · · · , w1m, w1nand PK to P .

4.3.3 Outsourcing Verification Phase

In this phase, V will verify the result without knowing the circuit and any of the

assignments z (including y) in a PCP fashion. Given that the commit/decommit protocol

has inherently provided the linearity test, it is sufficient to conduct only circuit tests and

quadratic consistency tests.

The first step is the circuit satisfiability test. As in Section 4.2, V generates ran-

domly two weight vectors. However, the vectors are a little bit different here: he generates

(w1(m+1), w1(m+2), · · · , w1(n−1)), all from F. Let w′′1 be (0m||(w1(m+1), w1(m+2), · · · , w1(n−1))||0).

He generates w2 as w2 = (w0 +α1w
′
1) +α1w

′′
1 , and queries P with w′′1 and w2. This time,

he will receive back Enc(PK,A1), Enc(PK, a1), Enc(PK,B1), Enc(PK, b1). Using PK,

V computes Enc (PK, (s1 + α1c0)) from s1, α1 and c0. Using the additive homomor-

phism of underlying encryption, V can compute Enc(PK, (b1−((s1 +α1c0)+α1a1))) from

Enc(PK, (s1+α1c0)), Enc(PK, a1), and Enc(PK, b1). Enc(PK, (b1−((s1+α1c0)+α1a1)))

is denoted by Enc(PK, plain1). Similarly, he gets Enc(PK,B1 − (S1 + α1A1)), de-

noted by Enc(PK, plain2). Using the additive homomorphism of underlying encryption,

from Enc(PK,A1) and from Enc(PK, a1), V computes Enc(PK,A1 + a1), denoted by

Enc(PK, plain3).

The second step is the quadratic consistency test. V randomly generates α2, α3, α4

all from F. He randomly generates queries q2, q3 and constructs following queries: q4 =

q2⊗q3, t = r1||R1+α0(r0||R0)+
∑3

i=2 αi(qi||0n
2
)+α4(0n||q4). V queries P with (q2, q3, q4, t)

and gets back Enc(PK, a2), Enc(PK, a3), Enc(PK, a4), and Enc(PK, b2) where a2 =

〈q2, z〉, a3 = 〈q3, z〉, a4 = 〈q4, z ⊗ z〉, b2 = 〈t, z||z ⊗ z〉. We denote Enc(PK, (b2 −

((s1 + S1 + α0(s0 + S0)) +
∑4

i=2 αiai))) by Enc(PK, plain4), which can be computed

from Enc(PK, (s1 + S1 + α0(s0 + S0))), Enc(PK, ai)’s (i = 2, 3, 4) and Enc(PK, b2)
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using the homomorphism of the underlying cryptosystem. Then, V randomly generates

four random numbers from F: θ1, · · · , θ4, and constructs Enc(PK,
∑4

i=1 plaini · θi) from

Enc(PK, plaini)’s using the homomorphism. V sends Enc (PK,
∑4

i=1 plaini · θi) to C

with Enc(PK, a4), Enc(PK, a3), and Enc(PK, a2) to C.

We adopt the a variant of the El Gamal cryptosystem [8] as our additive homo-

morphic encryption. The cryptosystem operates over a group G of prime order q.

g ∈ G is a random generator of G. The ciphertext of m is Enc(pk,m) = (gk, gm+ak)

where (pk, sk) = (ga, a). It is easy to see this encryption is an additive homomor-

phic encryption. The ciphertext of the sum of two plaintexts could be constructed as:

Enc(pk,m1 +m2) = Enc(pk,m1) ·Enc(pk,m2) = (gk1+k2 , gm1+m2+a(k1+k2)). The third step

is to perform linearity tests. Since the underlying cryptosystem is addition homomorphic,

it is easy to check the linearity homomorphically.

4.3.4 Making A Decision

C first decrypts Enc(PK,
∑4

i=1 plaini · θi) and determines whether the plaintext is 0.

If not, C will reject. Otherwise C decrypts Enc(PK, a2), Enc(PK, a3) and Enc(PK, a2).

Then, C determines whether a2a3 = a4. If so, he will accept that y is the correct solution

of his computational task.

4.3.5 Security Analysis

Theorem 2. (Correctness) If the arithmetic circuit x is satisfiable, then a prover P with

the knowledge of the correct input y is able to make the client C accept y by performing

our protocol.

Proof. It is easy for a prover P who has found out the correct result y of the computation

task to find out the correct assignment z = (z1, z2, · · · , zn) including the correct result

y and all the intermediate results of the circuit. That is, z satisfies all the constraints

fu, u = 1, · · · , n. If P responds with correct values as in the protocol, all corresponding
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test equations (unencrypted version) will hold. Given the encryption used in this section

is additive homomorphic, the ciphertexts of all the corresponding linear combinations

are ciphertexts of 0. The conclusion follows.

Definition 3. We say that a verification protocol for the arithmetic circuit satisfiability

problem x wins λ-confidentiality if the following properties are satisfied. In the context of

computational complexity, x can be represented as a binary string, and so can the correct

assignment z. Let Px, Pz : {0, 1}∗ → {0, 1} be arbitrarily-defined predicates, extracting

one bit of information about binary strings of arbitrary length. For every probabilistic

polynomial-time algorithm A, for every possible transmitted messages m = (m1, · · · ,mk)

with k = |m| = poly(λ), for every positive polynomial p(·), for every Px, Pz, we have:

Pr[A(1λ,m, 1|z|, commt) = Px(x))]− 1

2
<

1

p(λ)
(4.3.1)

Pr[A(1λ,m, 1|z|, commt) = Pz(z))]− 1

2
<

1

p(λ)
(4.3.2)

where commt is the commitment information provided by C before verification. (The

probability is over z as well as over the internal coin tosses of either algorithms.)

Theorem 3. (Confidentiality) If the underlying homomorphic encryption in our protocol

has the security parameter λ, then our verification protocol for the arithmetic circuit

satisfiability problem wins λ-confidentiality.

Proof. Recall that the commitment is commt = (α1, s1, S1, c0, w0 + α1w
′
1, (r1||R1) +

α0(r0||R0), Enc(PK, (s1 + S1 + α0(s0 + S0))). Given that all transmitted messages m =

(m1,m2, · · · ,mk) are encrypted in our protocol, for every probabilistic polynomial-time

algorithm A there exists a probabilistic polynomial-time algorithm A∗ such that

Pr[A(1λ,m, 1|z|, commt) = xi)]

< Pr[A∗(1λ, 1|z|, H) = xi] +
1

p(λ)
(4.3.3)

where H = (α1, s1, S1, c0, w0 + α1w
′
1, (r1||R1) + α0(r0||R0)). This follows directly from

an appropriate formulation of semantic security ([57], Def. 5.2.1) of the underlying
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homomorphic encryption. Now since (r0||R0) is uniformly random, (r1||R1)+α0(r0||R0))

is random and independent of (r1||R1) by the crypto lemma. Therefore, s1, S1 is the

response of the prover to a query (on z) which is random and independent of (α1, c0, w0 +

α1w
′
1, (r1||R1) + α0(r0||R0)). This implies that the entire H is independent of x and z,

and hence for any algorithm A∗, Pr[A∗(1λ, 1|z|, H) = xi] ≤ 1
2

+ 1
p(λ)

The inequalities in

(4.3.1) and (4.3.2) follow.

Theorem 3 implies that for sufficiently large λ, the advantage of an adversary finds

out the circuit and the results in the execution of the protocol is negligible.

Theorem 4. (soundness) The client will accept a wrong answer with probability less

than ≤ 4
|F| −

1
|F|2 + (1− (3δ−6δ2))k where the tests guarantee the proof is δ-close to linear

and k is the number of iterations of the linearity tests.

Proof. For any given wrong proof π̃ which consists of π̃(1) and π̃(2), we define the following

events:

E0 = {π̃ are accepted}

E1 = {π̃ is not committed}

E2 = {π̃ is not linear}

E3 = {π̃(1) and π̃(2) are not quadratic consistent}

E4 = {π̃ is not circuit correct}

If an incorrect answer is accepted by the client, then π̃ passes four kinds of tests:

decommitment (DT, denoted by Test1), linearity test (LT, denoted by Test2), quadratic

consistency test (QT, denoted by Test3), and the circuit correctness test (CT, denoted
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by Test4). Thus,

Pr[E0]

=Pr[(E1 OR E2 OR E3 OR E4) AND passing 4 tests]

=Pr[
4⋃
i=1

(Ei AND passing 4 tests)]

≤Pr[
4⋃
i=1

(Ei AND passing Testi)]

≤
4∑
i=1

Pr[(Ei AND passing Testi)]

Analysis of the commitment/decommitment protocol [9] shows that

Pr[π̃ is not commited AND passing DT] ≤ 1

F
. (4.3.4)

The commitment/decommitment protocol also executes the linearity test [59]. It is

shown ([59]) that

Pr[π̃ is δ close to linear AND passing LT] ≤ (1− (3δ − 6δ2))k. (4.3.5)

where k is the number of iterations of the linearity tests.

Each quadratic consistence test trial will reject the wrong proof with probability

at least (|F|−1)2

|F|2 [7]. Thus, each quadratic consistence test will wrongly accept with

probability at most 1− (|F|−1)2

|F|2 = 2|F|−1
|F|2 .

Each circuit correctness test trial will wrongly accept a proof with probability at most

1
|F| [7]. Thus,

Pr[E0] ≤ 1

|F|
+ (1− (3δ − 6δ2))k + (

2|F| − 1

|F|2
) + (

1

|F|
)

=
4

|F|
− 1

|F|2
+ (1− (3δ − 6δ2))k (4.3.6)

This holds for any incorrect π̃. Given that for a wrong answer y, any proof π̃ is

incorrect, the client will accept this wrong answer with probability less than 4
|F| −

1
|F|2 +

(1 − (3δ − 6δ2))k where the tests guarantee the proof is δ-close to linear and k is the

number of iterations of the linearity tests.
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4.4 Practical Use and Complexity Analysis

4.4.1 Amortized Query Costs

Our proposed schemes can amortize query costs. That is, our designs are able to use

the same commitment/decommitment queries and PCP queries across many instances of

the same circuit (with different input/output). The same commitment/decommitment

queries and PCP queries make sure that it is still infeasible for P to know the secret

commit query and provide uncommitted responses. (It is known that if we fix a given

instance, the probability of wrongly accepting will not be influenced by other instances

[8].)

The amortizing usage is as follows.

1. There is an off-line stage. In this stage, C reads the circuit and constructs the

commitment queries and sends to P . This is done only once.

2. P possesses β proofs (linear functions) π̃1, · · · , π̃β, one for each instance. For

commitment construction, P will return β tuples of commitments, each of which

is as in the previous section.

3. For each instance, P computes the results.

4. In the verification phase, for the same query tuple q1, · · · , q4, t from V , P will

response β tuples of answers, each for one instance. For each instance, V verifies

results as in the previous section. Totally, V runs β decommitments, β circuit tests,

and β quadratic consistency tests, one for each instance.

We give a practical use example here. Suppose C has a large number of computational

tasks. All these tasks can be reduced to an instance of the Circuit-SAT problem with

the same circuit. Before using the Cloud server to do computing, C will generate the

commitment queries: w0, r1, R1, r0, R0. This is an off-line stage and it runs only once for
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Table 4.2 Comparison of Complexity for Each Instance

Computation Communication

Our Basic Scheme
C’s cost 0 m + O(1)

V’s cost m ·Mult +m · Add + 1
β

[n2 ·Mult + (4n) · RNG] 1
β
O(n2)

Our Full Solution
C’s cost (m + 1) ·Mult +m · Add + Enc + 3Dec m + O(1)

V’s cost poly(λ) · Oper + O(1) ·Mult + O(1) · Add + 1
β

[n2 ·Mult + (4n) · RNG] 1
β
O(n2)

Re-computing ≥ [poly(n) ·Mult + poly(n) · Add] 0

NP-proof poly(n) ·Mult + poly(n) · Add n

Linear PCP (Ishai et al.) poly(n) ·Mult + poly(n) · Add O(n2)

GINGER [(m + 1) ·Mult +m · Add] + 1
β

[poly(n) ·Mult + poly(n) · Add + (n2 + 2n) · RNG] 1
β
O((n +m)2)

all instances. The on-line stage is as in Section 4.3. First, C gives the computing tasks to

P . Secondly, P computes the tasks and gives back the results and the commitments to

C. After choosing a verifier V , C outsources the verification to V . V advises C to accept

or reject.

4.4.2 Complexity Analysis

Our design meets the efficiency goal outlined in Section 4.1.3. As in [58], we are

ignoring the time of the offline stage, since the cost of generating the commit/decommit

queries can be amortized over many instances. We compare the computational cost and

the communication cost of C between our protocol and other related work in Table 4.2.

In this table, Mult and Add are the cost of multiplication and addition in F. RNG is the

cost of generating a random number in F. Oper is the cost of the additive homomorphic

operation. In our design, the computational and communication complexity of C for

each instance is O(m), (m is the length of results y) and is not dependent on the circuit

size n. This is much more efficient than all current two-party verification schemes. We

observe that V is also very efficient. Even the cost of both C and V combined is less than

the verifier’s cost in the state-of-the-art argument systems that rely only on standard

cryptographic assumptions.
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4.5 Mathematical Proof of the Commitment

We prove the main theorem through several lemmas and other theorems. Our idea

is to prove that, if combining our commitment construction protocol with either of our

decommitment phases, the answers of the prover is guaranteed to be bound to a function.

Then, we prove the two functions are actually the same function.

For combining our commitment construction protocol with either of our decommit-

ment phases, we provide a Lemma stating that efficiently solving a certain cryptographic

problem is infeasible. Then, we show that if the prover’s answers are not bound, we can

construct an efficient algorithm to solve that hard cryptographic problem. The binding

property follows.

Specifically, we first prove that first decommitment protocol checks will guarantee the

prover’s output is bound to a function σ̃ with high probability (Theorem 6 and Corollary

7). Otherwise an efficient algorithm can solve an infeasible cryptographic problem that

contradicts Lemma 5. Then, we prove the second decommitment protocol checks will

guarantee the prover’s output is bound to a function ρ̃ with high probability (Theorem

9 and Corollary 10). Otherwise an efficient algorithm will contradict Lemma 8. Lastly,

we prove if we combine the first and the second decommitments, the prover’s output

is guaranteed to be bound to a single function π̃ with high probability (Theorem 13).

Otherwise we can construct an efficient algorithm that contradicts Lemma 12. That is,

with high probability σ̃(q) = ρ̃(q) , π̃(q).

Lemma 5. Let X be the tuple

(pk, Enc(pk,R1||r1),Φ, w1, w0 + α1w1, w0 + α′1w1).

For every efficient algorithm A, we have

Pr[A(X) = α1] ≤ 1

|F|
+ neg(n) (4.5.1)
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where R1 ∈ Fn2
, r1, w0, w1 ∈ Fn, α1, α

′
1 ∈ F, and Φ is the constraint function that

R1, r1, w0 satisfy, and neg() is a negligible function of its input. The probability is over

all w0 as well as the randomness of functions Enc and Gen of the underlying cryptosystem.

Proof. From the semantic security ([57], Def. 5.2.2), for every efficient A, there exists a

probabilistic polynomial-time algorithm A′ such that

Pr[A(X) = α1]

≤Pr[A′(Φ, w1, w0 + α1w1, w0 + α′1w1) = α1] + neg(n) (4.5.2)

Given that the constraint function Φ is independent on the tuple w1, w0 +α1w1, w0 +

α′1w1, the knowledge of Φ will not help any function A′ to figure out α1. Thus, for every

probabilistic polynomial-time algorithm A′ we have

Pr[A′(Φ, w1, w0 + α1w1, w0 + α′1w1) = α1]

=Pr[A′(w1, w0 + α1w1, w0 + α′1w1) = α1]

≤1/|F| (4.5.3)

The conclusion follows from 4.5.2 and 4.5.3.

Theorem 6. Our commitment construction protocol combined with the first decommit-

ment protocol is a commitment with linear decommitment.

Proof. The correctness is straightforward. Now we prove the binding property.

For any environment E and efficient malicious prover P∗, define the following exper-

iment. P∗ plays the role of P . Now, invoke the decommitment phase with P∗ and V

twice, using the same commitment phase and w1, but different α1. We say P∗ wins if

V accepts two distinct values a1, a
′
1, or accepts two distinct values A1, A

′
1. Assume P∗

wins with non-negligible probability. Then, there is an environment E and an efficient

malicious prover P∗ with a weight vector w1 such that for random pair α1, α
′
1, P∗ returns
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(a1, a
′
1) and (A1, A

′
1) to V and makes him accept at least one of the two pairs with non-

negligible probability. We show that this fact implies that we can construct an algorithm

A that will contradict Lemma 5. Let w2 be the value of w0 + α1w1 and w′2 be the value

of w0 + α′1w1. When (pk, Enc(pk, w0), w2, w
′
2) is input, A executes following operations,

corresponding to the steps of the protocol.

1. A gives P∗ (pk, Enc(pk, w0)).

2. P∗ gives back two values (e1, E1) which A ignores.

3. A gives P∗ (w1, w2) and receives back (a1, b1) and (A1, B1).

4. A gives P∗ (w1, w
′
2) and receives back (a′1, b

′
1) and (A′1, B

′
1).

From w2 = w0 +α1w1 and w′2 = w0 +α′1w1, A can figure out (α1−α′1)w1 = w2−w′2.

Given that there must be a index j such that w1j 6= 0 (otherwise w1 = 0 and the protocol

need not to be invoked), A can have

α1 − α′1 = (w2j − w′2j)/wj (4.5.4)

Then, from b1 = s1 + α1a1, b′1 = s1 + α1a
′
1, B1 = S1 + α1A1, and B′1 = S1 + α1A

′
1, A

can have

b1 − b′1 = α1a1 − α′1a′1 (4.5.5)

B1 −B′1 = α1A1 − α′1A′1 (4.5.6)

From the assumption above, at least one of the following holds with non-negligible

probability: a1 6= a′1 and A1 6= A′1. Without loss of generality, let us say a1 6= a′1 holds

with non-negligible probability. Then, A can compute α1 from (4.5.4) and (4.5.5). this

contradicts Lemma 5.

Corollary 7. For our commitment construction protocol combined with the first decom-

mitment, the following holds. For any environment E, any accepted output of V at the
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end of the decommitment phase is guaranteed to be a function σ̃(q) = Ext(vP∗ , vV , q)

except with negligible probability in n, where vP∗ , vV are the views of P∗ and V in the

commitment phase, q is the query in decommitment phase generated by E, Ext is a (pos-

sibly inefficient) extractor which given the views of P∗ and V in the commitment phase

“extracts” a function to which P∗ is committed, and the probability is over all randomness

of P∗ and V in both phases.

Proof. Given that our commitment construction protocol combined with the first decom-

mitment protocol is a commitment with linear decommitment (Theorem 6), the Corollary

follows directly from Lemma 3.2 of [7].

Lemma 8. Let X be the tuple

{pk, Enc(pk,R1||r1), Enc(pk,R0||r0), (R1||r1) + α0(R0||r0) + αq, (R1||r1) + α0(R0||r0) + α′q}

For every q ∈ Fn+n2
and every efficient algorithm A, we have

Pr[A(X) = α] ≤ 1

|F|
+ neg(n) (4.5.7)

where R1, R0 ∈ Fn2
, r1, r0 ∈ Fn, α, α′ ∈ F. The probability is over all R1||r1, R0||r0,

α, α′, α0, as well as the randomness of functions Enc and Gen of the underlying cryp-

tosystem. Note: R0||r0 is uniformly distributed in Fn+n2
; however, R1||r1 is a punctured

vector in Fn+n2
. Namely, R1||r1 have many fixed components with the value 0.

Proof. From the semantic security ([57], Def. 5.2.2), for every efficient A, there exists a

probabilistic polynomial-time algorithm A′ such that

Pr[A(X) = α]

≤Pr[A′((R1||r1) + α0(R0||r0) + αq, (R1||r1) + α0(R0||r0) + α′q) = α]

+neg(n) (4.5.8)

For every probabilistic polynomial-time algorithm A′ we have

Pr[A′((R1||r1) + α0(R0||r0) + αq, (R1||r1) + α0(R0||r0) + α′q) = α] ≤ 1/|F| (4.5.9)
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The conclusion follows from 4.5.8 and 4.5.9.

Theorem 9. Our commitment construction protocol combined with the second decom-

mitment is a commitment to a function with multiple decommitments (CFMD) with

εB = 1/|F|+ neg(n).

Proof. The correctness is straightforward. Now, we prove the binding property. We will

show that if P∗ can systematically cheat, then there exists an efficient algorithm that

takes

{pk, Enc(pk,R1||r1), Enc(pk,R0||r0),

(R1||r1) + α0(R0||r0) + αq, (R1||r1) + α0(R0||r0) + α′q}

as input and outputs α with probability more than 1
|F| + neg(n). It contradicts Lemma

8.

Suppose the binding property does not hold. Then, there exists an environment E

and an efficient malicious prover P∗. E produces (q1, q2, · · · , qµ) and (q′1, q
′
2, · · · , q′µ) such

that there exist indices i and j satisfying qi = q′j , q. P∗ returns a1, a2, · · · , aµ and

a′1, a
′
2, · · · , a′µ among which ai 6= a′j to V , and makes V accept them with probability

more than 1
|F|+neg(n). The probability is over the randomness of the commit phase and

of two runnings of the decommit phase.

We show that the existence of i, j implies that we can construct an algorithm A that

will contradict Lemma 8. For any (α, α′), let v be the value of (R1||r1) + αq and v′ be

the value of (R1||r1) + α′q. When

{pk, Enc(pk,R1||r1), Enc(pk,R0||r0), v, v′, R0||r0}

is input, A executes following operations according to the protocol.

1. A gives P∗: (pk, Enc(pk,R1||r1), Enc(pk,R0||r0)).

2. P∗ gives back two values (e1, e2) which A ignores.
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3. A randomly generates (α1, · · ·αi−1, αi+1, · · · , αµ) and (α′1, · · ·α′j−1, α
′
j+1, · · · , α′µ);

4. A constructs two queries v +
∑

k∈[µ]\i αkqk and v′ +
∑

k∈[µ]\j α
′
kq
′
k.

5. A gives the two queries constructed in the last step to P∗ and receives back two

values (b, b′).

6. A gives P∗ (q1, q2, · · · , qµ) and (q′1, q
′
2, · · · , q′µ). A receives back a1, a2, · · · , aµ and

a′1, a
′
2, · · · , a′µ.

From v = (R1||r1)+α0(R0||r0)+αq and v′ = (R1||r1)+α0(R0||r0)+α′q, A can figure

out (α−α′)q = v− v′. Given that there must be an index k such that qk 6= 0 (otherwise

q = (0, · · · , 0) and the protocol need not to be invoked), A can have

α− α′ = (vk − v′k)/qk (4.5.10)

Then, from b = s1 +α0s0 +αai +
∑

k∈[µ]\i αkak, b
′ = s1 +α0s0 +α′a′j +

∑
k∈[µ]\j α

′
ka
′
k,

A can have

αai − α′a′j

=(b− b′)− (
∑
k∈[µ]\i

αkak −
∑
k∈[µ]\j

α′ka
′
k) (4.5.11)

From the assumption above, ai 6= a′j holds with probability more than 1
|F| + neg(n).

Then, A can compute α from equations (4.5.10) and (4.5.11). It contradicts Lemma 8.

Corollary 10. For our commitment construction protocol combined with the second

decommitment, the following holds. For any environment E, any accepted output of V

at the end of the decommitment phase is guaranteed to be a function ρ̃(q) except with

negligible probability in n, where q is the query in decommit phase generated by E, and

the probability is over all randomness of P∗ and V in both commit and decommit phases.

Proof. This follows directly from Theorem 9 and Lemma B.2 of [8].
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To prove our final Theorem, we will prepare two Lemmas: Lemma 11 and Lemma

12. Lemma 12 is a theoretical result based on Lemma 11. We show in the proof of our

final Theorem that we will be able to construct a contradiction against Lemma 12 if P∗

can systematically cheat.

Lemma 11. Let X be the tuple

{pk, Enc(pk,R1||r1), (R1||r1) + αq, (R1||r1) + α′q}

where R1 ∈ Fn2
, r1 ∈ Fn, α, α′ ∈ F. However, R1||r1 is a punctured vector in Fn+n2

as

it is constructed in our protocol. Namely, R1||r1 have many fixed components with the

value 0.

Then, for every q that is constructed in the same way as R1||r1 (namely, q has the

same fixed components 0 as R1||r1), and every efficient algorithm A, we have

Pr[A(X) = α] ≤ 1

|F|
+ neg(n), (4.5.12)

The probability is over all R1||r1, α, α′, as well as the randomness of functions Enc and

Gen of the underlying cryptosystem.

Proof. From the semantic security ([57], Def. 5.2.2), for every efficient A, there exists a

probabilistic polynomial-time algorithm A′ such that

Pr[A(X) = α]

≤Pr[A′((R1||r1) + αq, (R1||r1) + α′q) = α]

+neg(n) (4.5.13)

For every probabilistic polynomial-time algorithm A′ we have

Pr[A′((R1||r1) + αq, (R1||r1) + α′q) = α]

≤1/|F| (4.5.14)

It follows that Pr[A(X) = α] ≤ 1
|F| + neg(n)
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Lemma 12. Let X be the tuple {pk, Enc(pk,R1||r1), (R1||r1)+αq, (R1||r1)+α′q}. Then,

for any (probably unknown) function f(·) : Fn+n2 7→ F, any vector R0||r0 ( R0||r0 6=

R1||r1), and s (the correponding value of f(R0||r0)), for every q that is constructed in

the same way as R1||r1 (namely, q has the same fixed components 0 as R1||r1), and every

efficient algorithm A, we have:

Pr[A(X,R0||r0, s) = α] ≤ 1

|F|
+ neg(n), (4.5.15)

where R1, R0 ∈ Fn2
, r1, r0 ∈ Fn, α, α′ ∈ F. The probability is over all R1||r1, α, α′, as

well as the randomness of functions Enc and Gen of the underlying cryptosystem. Note:

R0||r0 is uniformly distributed in Fn+n2
; however, R1||r1 is a punctured vector in Fn+n2

.

Namely, R1||r1 have many fixed components with the value 0.

Proof. Since R1||r1, R0||r0, and the function f(·) are independent, the information of

R0||r0 and s will not help any algorithm A to solve α. The conclusion follows directly

from Lemma 11.

Theorem 13. For our commitment construction protocol combined with both the first

and second decommitment, the following holds. For any environment E, any accepted

output of V at the end of the decommitment phase in each protocol, is guaranteed to be

bound to the same function π̃(q) except with probability less than 1
|F| + neg(n), where q

is the query in either of the decommitment phases generated by E, and the probability is

over all randomness of P∗ and V in all phases. That is, for all q’s, σ̃(q) = ρ̃(q) , π̃(q)

holds except with probability less than 1
|F| + neg(n), where σ̃(q) and ρ̃(q) are defined in

Corollary 7 and Corollary 10.

Proof. We will show that if P∗ can systematically output σ̃(q) 6= ρ̃(q), then there exists

an efficient algorithm that takes

{pk, Enc(pk,R1||r1), (R1||r1) + αq, (R1||r1) + α′q, R0||r0, s}



www.manaraa.com

46

as input and outputs α with probability more than 1
|F| + neg(n). where (R1||r1), α, α′, q

and R0||r0, s are as in Lemma 12. That contradicts Lemma 12.

Suppose there is a malicious prover P∗ which can systematically output σ̃(q) 6= ρ̃(q)

with probability more than 1
|F| + neg(n). Then, there exists an environment E that

produces a function f(·) that f(R0||r0) = s, q′1 and (q1, q2, · · · , qµ) such that there exists

a index i satisfying q′1 = qi , q, and P∗ returns a′1 (for q′1) and a1, a2, · · · , aµ (for

(q1, q2, · · · , qµ)), where a′1 6= ai, to V and makes V accept them with probability more

than 1
|F|+neg(n). The probability is over the randomness of the commit phase and of two

runnings of the decommit phase. Note: in our protocol, q′1 is not sent explicitly. Instead,

q′1 was sent implicitly through the weight vector w1. Thus, q′1 is a “punctured” vector in

Fn+n2
, with many fixed components of value 0. Correspondingly, qi is also “punctured”

vector in Fn+n2
, with many fixed components of value 0.

We show that the existence of i implies that we can construct an algorithm A that

will contradict Lemma 12. For random (α, α′), let v be the value of (R1||r1) + αq and

v′ be the value of (R1||r1) + α′q. When {pk, Enc(pk,R1||r1), v, v′, R0||r0, s} is input, A

executes following operations according to the protocol.

1. A encryptsR0||r0 to Enc(pk,R0||r0) and gives P∗: (pk, Enc(pk,R1||r1), Enc(pk,R0||r0)).

2. P∗ gives back two values (e1, e2) which A ignores.

3. A randomly generates (α0, α1, · · ·αi−1, αi+1, · · · , αµ) and α′;

4. A constructs two queries v + α0(R0||r0) +
∑

k∈[µ]\i αkqk and v′.

5. A gives P∗ v + α0(R0||r0) +
∑

k∈[µ]\i αkqk and v′. and receives back two values

(b, b′).

6. A gives P∗ (q1, q2, · · · , qµ) and q′1. A receives back a1, a2, · · · , aµ and a′1.

From v = (R1||r1) + αq and v′ = (R1||r1) + α′q, A can figure out (α− α′)q = v − v′.

Given that there must be a index k such that q(k), q’s kth entry is non-zero (otherwise
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q = (0, · · · , 0) and the protocol need not to be invoked), A can have

α− α′ = (v(k) − v′(k))/q(k) (4.5.16)

Then, from b = s1 + α0s0 + αai +
∑

k∈[µ]\i αkak, b
′ = s1 + α′a′1, A can have

αai − α′a′1 = (b− b′)− (α0s0)− (
∑
k∈[µ]\i

αkak) (4.5.17)

From the assumption above, ai 6= a′1 holds with probability more than 1
|F| + neg(n).

Then, A can compute α from equations (4.5.16) and (4.5.17) with probability more than

1
|F| + neg(n). It contradicts Lemma 12.

The proof of the Main Theorem (Theorem 1) follows directly from Theorem 13.

4.6 Conclusions and Future Directions

In Cloud Computing, a client outsources computation to a more powerful server –

the prover. To ensure the correctness of the results returned by the prover, the client

has to perform a verification stage that is often tedious and expensive. In this work, we

introduce the idea of delegation of verification in Cloud Computing. This natural ap-

proach relieves the client from performing the verification of the outsourced-computation

results by outsourcing it to a third party – the verifier. We propose the first scheme that

provides efficient outsourcing of the verification, while at the same time preserving the

confidentiality of both the computational task and its result from untrusted verifiers.

Given that the computational tasks are not limited to a specific computational prob-

lem, it appears at a first glance that the fully-homomorphic encryption is necessary for

hiding the computational task. However, by means of combining a novel commitment

protocol and the linear PCP system with only additive homomorphic encryption, our

design enables a honest-but-curious third party to perform the bulk of the verification



www.manaraa.com

48

procedure, without gaining access to information about the original computational task

or its result. We are currently investigating delegation of verification with a verifier who

does not perform the protocol faithfully – a curious and lazy verifier.
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CHAPTER 5. VERIFIABLE COMPUTATION WITH

REDUCED INFORMATIONAL COSTS AND

COMPUTATIONAL COSTS

5.1 Motivation

The state-of-the-art Zaatar [10] showed the connection between Linear PCP and

QAP. However, unlike other QAP-based designs [13] [14], Zaatar relies only on standard

cryptographic assumptions. It applies QAP into the framework of PCP and generates

a novel verifiable computation scheme. Moreover, as an appealing verifiable computa-

tion scheme, Zaatar makes the prover more efficient than any other PCP-based designs.

However, Zaatar does not bring major improvements to the verifier’s computational cost.

As in the recent PCP-based works [7] [60] [8] [9], once the prover has committed to the

proof, the most computationally-intensive part for the verifier in Zaatar is the generation

of queries. The high costs of the verifier are hence lowered by reusing some of the queries

for multiple instances of the same problem – or batching. For computational tasks that

can tolerate large batch sizes, the costs of verification in Zaatar can be driven down

by amortizing. However, for tasks that require low investment on the verification and

tolerate only small batch sizes, a new, more efficient protocol is needed.

Besides the computation and communication costs that have been concerned in exist-

ing research of verifiable computation, another type of verification cost has been generally

ignored until now. We call this the informational cost – the cost associated with infor-

mation required for verification on both sides. The verifier’s information required for
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verification usually consists of verification keys and the full knowledge of the computa-

tion task. The prover’s informational costs usually consists of the proof vector.

The informational cost generally has a strong impact on the adoption of the verifi-

cation algorithms. On one hand, the size of the required information directly influences

the memory cost for verification, and the speed of verification. For the memory cost,

verifiers in existing research keep the required information in a large memory and fre-

quently access it. For the speed, the length of the proof vector determines the cost

of generating, and responding to, the queries while verifying. On the other hand, the

informational cost implies the privacy/confidentiality issues. One obvious risk is that,

storing this information itself introduces potential leakage of sensitive information about

the computational task and its results. A more serious risk occurs in the context of the

third party verification. (For example, disputes between the server and the client can be

solved by an arbitrator who plays the role of the third-party verifier. Similar verifications

may be required by government agencies, nonprofit organizations, and consumer safety

organization, for the purpose of quality evaluation, project management, etc.) In such

scenarios, information cost implies the computation task and its results being delivered

to the third party. However, once delivered, the information is out of the control of the

client and the client can never call them back. This security issue, in turn, may limit

the outsourcing of verification.

As far as informational costs are concerned, all recent PCP-based works [7] [60]

[8] [9], [10] require the verifier to have full knowledge of the computation circuit while

performing the verification. Note: zero-knowledge property in proof systems refers to

the requirement that nothing is known except the answer to the verifier. However, the

computation are known by both parties.
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5.1.1 Our Contributions

In this chapter, we introduce RIVER, a Reduced-investment verified computation

protocol, whose improvement further enhances the practicality of argument systems in

verifiable computation. Our contributions are summarized as follows:

• RIVER reduces the verifier’s workload that needs to be amortized. Namely, the

number of batched instances of the protocol, required for amortization, will largely

decrease. Instead of batching over instances of the same circuit as in existing

works, RIVER makes more parts of costs amortized over instances of all different

circuits of the same size. We model the costs and compare the costs using a

typical computation such as matrix multiplication, showing that RIVER is 28%

better than state-of-the-art Zaatar at the verifier side.

• As a side effect, RIVER increases the prover’s non-amortized cost and amortized

cost. However, the introduced non-amortized part is negligible. Although RIVER

introduces amortized cost to the prover side, this cost can be amortized over in-

stances of all different circuits of the same size.

• RIVER reduces the informational cost of the verifier, by removing the require-

ment that the verifier has to access the circuit description during query generating.

Thus, a third-party verifier can help generating the queries without knowing the

computation task details.

• RIVER adopts one of our theoretical findings. We show that under certain assump-

tions, the Single-Commit-Multi-Decommit protocol provides the inherent linearity

tests. Thus, a modified Single-Commit-Multi-Decommit protocol will make the

linearity tests obsolete and reduce verification costs.
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5.2 System Model

In the context of cloud computing, we propose a computation architecture involving

two parties: the client V , who is computationally weak, has computation tasks to be

delegated to the cloud; the cloud server P , who is computationally powerful, provides

computing services to the client. The computation tasks are formalized into the arith-

metic circuit – i.e., the computation task is performed over an arithmetic circuit. This is

pretty natural, since arithmetic circuits can be easily mapped to real-world computation

tasks1. Let Ψ be a |Ψ|-gate arithmetic circuit. The client V is providing the prover P

with Ψ and input X ∈ Fn, and expects P to return the correct output Y ∈ Fn′ . Then P

tries to convince V that Y is correct. P will hold a proof Z, which is a correct assignment

Z –the concatenation of the input X, output Y with all the intermediate results W inside

the circuit, (Z = X||Y ||W ) and has length |Z| = m, where W is the intermediate result

vector W ∈ Fm−n−n′ of the circuit Ψ.

5.3 A Technique: A Commitment Providing Inherent

Linearity Tests

In the line of linear-PCP fashion verifiable computation designs, once the prover is

committed to a proof, the verifier has to perform laborious linearity tests to ensure the

proof is linear. In fact, the number of queries required to perform linearity tests dominate

the number of overall queries of the protocol. Thus, the cost caused by linearity test is

still one of the bottlenecks of current protocols. Up to now, in the context of Single-

Commit-Multi-Decommit protocol (refer to Section 3.5), whether the linearity tests are

necessary was still an open question. In this section, we propose our theoretical result,

showing that under an assumption, the Single-Commit-Multi-Decommit protocol will

1Existing compilers can turn high-level programs into arithmetic circuits [9], [10], [14]. For simplicity,
we omit these techniques.
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provides inherent linearity tests. Thus, if linear PCP is combined with this commitment

protocol, the linearity tests are obsolete. We will adopt the following theoretical results

in our protocol design and thus achieve cost savings.

Theorem 14. The Single-Commit-Multi-Decommit protocol ensures that, if the secret

commit information is generated by the prover using an affine function (analytically

defined), (or equivalent to the cases that is generated by the verifier himself), for all

query tuples, unless the sender (or prover) replies to all queries with the same linear

function and he knows the analytic description of this linear function, the prover will not

pass the decommitment test except with probability 1
|F| + εS, where the probability is over

the randomness of the prover and the verifier in the decommitment phase.

Proof. Let π() denote the proof in the PCP sense. The prover knows that, when the

verifier generates the commitment information π(r), he uses the linear function F1(·),

such that π(r) = F1(r). We claim that in this scenario, the prover has to answer all

queries with the same linear function F1 – otherwise the probability that the prover

passes the decommitment test is less than 1
|F| + εS.

To prove this, we assume that there exists a PPT prover P∗, and queries q1, q2, · · · , qµ,

such that once committed, with these queries, the probability that P∗ answers the µ

queries with a function f(·) – such that there exists at least one index k for which

f(qk) 6= F1(qk) – and passes the decommitment test, is more than 1
|F| + εS, where the

probability is over the randomness of the prover and the verifier in the decommitment

phase.

We can now modify P∗ and make it into an algorithm P† which can solve the problem

stated in Lemma 15 with probability more than 1
|F| + εS:

1. P† has inputs: Enc(r), r + αqk, qk

2. P† uses Enc(r) as inputs and runs P∗’s commitment phase.

3. P∗ outputs with Enc(F1(r) which P† will neglect.
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4. P† produces a set of coefficients {α1, · · · , αk−1, αk+1, · · · , αµ−1, αµ}, and runs P∗’s

decommitment phase with following: {q1, q2, . . . , qµ−1, qµ, (r + αqk) +
∑k−1

i=1 αiqi +∑µ
i=k+1 αiqi}..

5. P∗ outputs {f(q1), . . . , f(qµ), F1(r)+αf(qk)+
∑k−1

i=1 αif(qi)+
∑µ

i=k+1 αif(qi)}. This

will pass the decommitment test with probability more than 1
|F| + εS.

6. Having access to {α1, · · · , αk−1, αk+1, · · · , αµ−1, αµ}, and f(q1), . . . , f(qµ), P† can

now obtain an equation of the form F1(r) + αf(qk) = b (where b ∈ F is easily

calculated).

Recall that P† has knowledge of r+αqk, which yields a group of n linearly-independent

linear equations in the form of r + αqk = a. Given that F1(qk) 6= f(qk), the equation

F1(r) + αf(qk) = b is linearly independent of the former n equations r + αqk = a. Thus,

A can solve for α from these n+ 1 linearly independent equations. This will contradict

Lemma 15:

Lemma 15. (from [7]) For any probabilistic polynomial time algorithm A, any q ∈ Fn,

and any uniformly-randomly picked r ∈ Fn we have Pr[A(Enc(r), r + αq, q) = α] ≤
1
|F| + εS, where εS is from the semantic security.

5.4 A Reduced-Investment Verifiable Computation Protocol:

RIVER

In this section, we introduce RIVER(reduced-investment verifiable computation pro-

tocol), an improvement of Zaatar [10], aimed at reducing the amortized cost of the verifier

– or equivalently, the number of instances required before amortization can be considered

complete. We accomplishes this by deferring some of the verifier’s amortizable compu-

tation to the prover. In doing so, two other benefits are achieved as side effects. First,
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the overall cost for the verifier is decreased when compared to Zaatar (and implicitly

also to Ginger). This is despite deferring some of the amortized computation to the

prover (the deferred part is almost negligible when compared to the construction of the

proof). Second, RIVER enables the verifier to generate queries independently – that

is, the query generating stage does not require full knowledge of the circuit. We detail

RIVER as follows.

5.4.1 PCP Querying

Our main observation is that the PCP query generation in Zaatar is somewhat re-

dundant. RIVER removes the redundancy by employing three rounds of PCP querying

and one round of decision making. The logical procedure is demonstrated in Figure 5.1.

5.4.2 PCP Querying of RIVER

Let l = |CR|. We represent the QAP polynomials Ai(t), Bi(t), Ci(t), with i =

0, 1, · · · ,m explicitly as:

Ai(t) = a
(i)
l t

l + a
(i)
l−1t

l−1 + · · ·+ a
(i)
1 t+ a

(i)
0 (5.4.1)

Bi(t) = b
(i)
l t

l + b
(i)
l−1t

l−1 + · · ·+ b
(i)
1 t+ b

(i)
0 (5.4.2)

Ci(t) = c
(i)
l t

l + c
(i)
l−1t

l−1 + · · ·+ c
(i)
1 t+ c

(i)
0 (5.4.3)

Evaluation of any one of these polynomials at the point t = τ can be expressed as a

linear function: Ai(τ) = π
(i)
A (qH) = 〈K(i)

A , qH〉, Bi(τ) = π
(i)
B (qH) = 〈K(i)

B , qH〉, Ci(τ) =

π
(i)
C (qH) = 〈K(i)

C , qH〉, where qH = (1, τ, τ 2, · · · , τ l) and

K
(i)
A = (a

(i)
l , a

(i)
l−1, · · · , a

(i)
1 , a

(i)
0 ) (5.4.4)

K
(i)
B = (b

(i)
l , b

(i)
l−1, · · · , b

(i)
1 , b

(i)
0 ) (5.4.5)

K
(i)
C = (c

(i)
l , c

(i)
l−1, · · · , c

(i)
1 , c

(i)
0 ). (5.4.6)
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qH

(qH)

V

qA

qB

qC

H (qH)

P

W (qA), W (qB), W (qC)

Figure 5.1 PCP querying

We can simply express the PCP queries of Zaatar as

qA = (πmA (qH), πm−1
A (qH), . . . , πn+n′+1

A (qH)) (5.4.7)

qB = (πmB (qH), πm−1
B (qH), . . . , πn+n′+1

B (qH)) (5.4.8)

qC = (πmC (qH), πm−1
C (qH), . . . , πn+n′+1

C (qH)). (5.4.9)

In RIVER, the verifier constructs qA, qB, qC by querying linear functions πiA, πiB, πiC

(i = 0, · · · ,m) by a single query qH .

Similarly, we can express H(t) and D(t) as:

H(t) = hlt
l + hl−1t

l−1 + · · ·+ h1t+ h0 (5.4.10)

D(t) = dlt
l + dl−1t

l−1 + · · ·+ d1t+ d0, (5.4.11)
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Table 5.1 The First Round of Our QAP-based Linear PCP

For every π in the set of π
(i)
A , π

(i)
B , π

(i)
C , (i = 0, 1, · · ·m) πD, perform the following:

• Divisibility queries generation. V randomly selects τ ∈R F. V takes qH ←
(1, τ, τ 2, · · · , τ l).

• Querying. V sends out qH and gets back π(qH).

If all these proofs pass all linearity tests, V will have: πD(qH) and

• π(m)
A (qH), π

(m−1)
A (qH), · · · , π(0)

A (qH),

• π(m)
B (qH), π

(m−1)
B (qH), · · · , π(0)

B (qH),

• π(m)
C (qH), π

(m−1)
C (qH), · · · , π(0)

C (qH),

and define: πH(·) = 〈KH , ·〉, where KH = (h0, h1, · · · , hl), and πD(·) = 〈KD, ·〉, where

KD = (d0, d1, · · · , dl). Zaatar points out that the evaluation of H(τ) can be viewed as

querying an oracle πH(·) with qH . Here, we argue that the same holds for the evaluation

of D(τ) – querying the oracle πD(·) with qH . The idea is detailed in Table 5.1. Note that

by comparison, Zaatar requires the queries qA, qB, qC , along with D(τ) to be entirely com-

puted by V . It should be mentioned that computing these queries by querying another

set of proofs requires additional commitments and testing. However, the procedure can

be simplified by removing all linearity tests for these 3m+ 4 = 3(m+ 1) + 1 proofs. The

reason this works is that, according to Theorem 14, our decommitment already provides

an inherent linearity test. In the second round of our design, V issues queries qH as in

Table 5.2. In the third round, V issues queries qA, qB, qC , qD as in Table 5.3. After V

collects all responses, he makes the decision as in Table 5.4.

5.4.3 Commit, Decommit and Consistency Verification of RIVER

To ensure the security of the protocol, P commits to all the linear functions mentioned

above. Similarly to Zaatar, our design inherits the single-commit-multiple-decommit

protocol from Ginger. For πH and πW , V and P run the IKO-style single-commit-multi-
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Table 5.2 The Second Round of Our QAP-based Linear PCP

V queries πH .

• Linearity queries generation. V selects q2, q3 ∈R Fl. Take q4 ← q3+q2. Perform
ρlin iterations in total.

• QAP queries generation. V takes qH ← (1, τ, τ 2, · · · , τ l) and q1 ← (qH + q2).

• Querying πH . V sends out q1, q2, · · · , q1+3ρ and gets back
πH(q1), πH(q2), · · · , πH(q1+3ρ).

• Linearity tests. Check whether following holds: πH(q4) = πH(q3) +πH(q2) and
likewise for all other ρ− 1 iterations. If not, reject.

At the end of this phase, if πH passes all linearity tests, V will have: πH(qH).

decommit protocol to generate the commitment. This part is omitted for simplicity.

For π
(i)
A , π

(i)
B , π

(i)
C , (i = 0, 1, · · · ,m) and πD, the case is a bit more complex. We

note that in addition to the commitments and decommitments, V has to also verify the

consistency of the polynomials’ coefficient vectors corresponding to π
(i)
A , π

(i)
B , π

(i)
C , for

i = 1, . . . ,m, and πD. Namely, V needs to make sure that P eventually uses π
(i)
A , π

(i)
B ,

π
(i)
C , for i = 1, . . . ,m, and πD to answer V ’s queries.

To accomplish this, we use the technique in Section 5.3 and come up with the com-

mitment/decommitment protocol as follows: Before sending P his computation task, V

secretly generates a random number r and computes by himself the values Ai(r), Bi(r),

Ci(r) (i = 0, 1, · · ·m) and D(r), each of which represents, respectively, the commitment

for π
(i)
A (), π

(i)
B (), π

(i)
C (), for i = 0, 1, . . . ,m, and πD(). The algorithm to compute these

values is demonstrated in Section 5.5.1. These values are stored for future decommit-

ment. This setup computation is done only once for different values of τ . In comparison

with Zaatar, where the setup requires the verifier to evaluate the queries associated with

different values of τ , a single r suffices for all τ ’s in RIVER, since the verifier outsources

extra computation to the prover. As in Table 5.5, our commitment design guarantees

the consistency of the polynomials’ coefficient vectors with the linear functions to which
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Table 5.3 The Second Round of Our QAP-based Linear PCP

V queries πW . Remember πW (·) = 〈W, ·〉, where W = (zm, zm−1, · · · , zN+1)

• Linearity queries generation. V select q4, q5 ∈R Fm−N . Take q6 ← q4 + q5.
Perform ρlin iterations in total.

• QAP queries generation. V takes:

– qA ← (π
(m)
A (qH), π

(m−1)
A (qH), · · · , π(n+n′+1)

A (qH)), and q1 ← (qA + q4).

– qB ← (π
(m)
B (qH), π

(m−1)
B (qH), · · · , π(n+n′+1)

B (qH)), and q2 ← (qB + q4).

– qC ← (π
(m)
C (qH), π

(m−1)
C (qH), · · · , π(n+n′+1)

C (qH)), and q3 ← (qC + q4).

• Querying πW . V sends out q1, q2, · · · , q3+3ρ and gets back
πW (q1), πW (q2), · · · , πW (q3+3ρ).

• Linearity tests. Check whether following holds: πW (q6) = π(q4) + π(q5) and
likewise for all other ρ − 1 iterations. If not, reject. Otherwise, accept and
output πW (qA) ← πW (q1) − πW (q4), πW (qB) ← πW (q2) − πW (q4), πW (qC) ←
πW (q3)− πW (q4).

P commits.

Theorem 16. Let π be any of the linear functions π
(i)
A , π

(i)
B , π

(i)
C and πD. By performing

our protocol, the commitment to π is guaranteed to be bound to a linear function π̃, and

the probability that π 6= π̃ is at most 1/|F|. The probability is over all the randomness of

the prover.

Proof. Given that our protocol performs the single-commit-multi-decommit protocol

when querying π, the response to the query is guaranteed to be bound to a linear function

π̃. This feature is provided by the underlying single-commit-multi-decommit protocol.

If π 6= π̃ but π̃ still passes the decommitment, π̃(r) = π(r) must hold. For all possible

choices of π̃, only 1/|F| of them can satisfy this equation. However, r is unknown by the

prover. Thus, the probability that a dishonest prover chooses a π̃ 6= π that passes the

decommitment is at most 1/|F|.
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Table 5.4 The Decision Making Stage of Our QAP-based Linear PCP

Decision Making: ( Note: (z1, z2, ·, zn+n′) = X||Y .)

• V computes:

– pA ←
∑(n+n′)

i=1 zi · π(i)
A (qH) + π

(0)
A (qH)

– pB ←
∑(n+n′)

i=1 zi · π(i)
B (qH) + π

(0)
B (qH)

– pC ←
∑(n+n′)

i=1 zi · π(i)
C (qH) + π

(0)
C (qH)

• Divisibility Test. V checks whether the following holds: πD(qH) · πH(qH) =
(πZ(qA) + pA) · (πZ(qB) + pB)− (πZ(qC) + pC).

Table 5.5 Decommit Design for π
(i)
A , π

(i)
B , π

(i)
C , (i = 0, 1, · · · ,m) and πD

P’s Input: linear functions πD, π
(i)
A , π

(i)
B , π

(i)
C , for i = 1, . . . ,m.

V’s Input: Ai(r), Bi(r), Ci(r), i = 0, · · · ,m and D(r), t = (1, r, r2, · · · , rl). q1, · · · , qµ
Commitment
The verifier generates the commitment information as in Section 5.5.1.
Decommitment
Step 1: V picks µ secrets α1, · · · , αµ ∈ F
V queries P with q1, · · · , qµ and T = t+ α1q1 + · · ·+ αµqµ.

Step 2: P returns (π
(i)
A (q1), · · · , π(i)

A (qµ), π
(i)
A (T )), (π

(i)
B (q1), · · · , π(i)

B (qµ), π
(i)
B (T )),

(π
(i)
C (q1), · · · , π(i)

C (qµ), π
(i)
C (T )), where i = 0, · · · ,m and (πD(q1), · · · , πD(qµ), πD(T )).

Step 3: V checks whether π
(i)
A (T ) = Ai(r) +

∑µ
j=1 αjπ

(i)
A (qj) and whether

π
(i)
B (T ) = Bi(r) +

∑µ
j=1 αjπ

(i)
B (qj) and whether π

(i)
C (T ) = Ci(r) +

∑µ
j=1 αjπ

(i)
C (qj),

i = 0, · · · ,m and πD(T ) = D(r) +
∑µ

j=1 αjπD(qj) hold.

If so, V accepts. Otherwise, he rejects and output ⊥.

5.5 Performance Analysis

For the informational cost, it is straightforward to see that, once committed, all the

queries in the verification are not depending on the circuit description. Namely, during

the query generating of the verification stage, the verifier does not need to access the cir-

cuit information any more. Our design separates the verification workload that involves

only non-sensitive information from the verification workload that involves sensitive in-

formation (e.g. the circuit information). In the scenarios with a third-party verifier, the
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verifier can undertake the workload involving only non-sensitive information (e.g. query

generating) without knowing the secrecy of the computation task.

In the following, we derive the computational cost of our RIVER design and compare

it with previous work. In the process, we show that, similarly to Ginger and Zaatar, our

protocol batches many instances for one same circuit to reduce the cost per instance.

But RIVER can amortize more parts of amortized cost over all different circuits of the

same size.

5.5.1 The Verifier

This section performs an analysis of the verifier’s cost. A comparison with the veri-

fier’s costs in two other the state-of-the-art designs is given in Table 5.6.

Setup

. The cost that RIVER incurs upon the commitment is (|WR|+ |CR|) ·(e+c)/β. This

is because RIVER needs two commitment query constructions. One is for πH , and incurs

a cost of |CR| · (e+ c)/β, while the other is for πW , and incurs a cost of |WR| · (e+ c)/β.

This total cost is the same as that of Zaatar.

It is apparent that RIVER introduces additional workload to the setup stage. V has

to evaluate Ai(r), Bi(r), Ci(r) and D(r). However, we have discovered that a large part of

the computation cost is independent of the underlying circuits. Rather, the computation

only depends on the size of the circuit. This implies that this part of the computation can

be amortized over many different circuits, which only share the same size, rather than

over many different instances of the same circuit. To see this, first notice that the target

polynomial D(t) =
∏|CR|

k=1 (t− σk) does not depend on the circuit details, but rather D(t)

is determined by the circuit size. Hence, we can compute D(r) once for all circuits of

the same size, where r is the secret as in Section 5.4. If given in the form of generalized

Newton’s interpolation formula ([61], 4.6.4), D(r) can be evaluated in time |CR| · f .
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Second, we express Ai(t), Bi(t), Ci(t) in the form of Lagrange Polynomial interpolation:

Ai(t) =
∑|CR|

j=1 aij · lj(t), Bi(t) =
∑|CR|

j=1 bij · lj(t), Ci(t) =
∑|CR|

j=1 cij · lj(t), where lj(t) =∏
1≤k≤|CR|,k 6=j

(t−σk)
(σj−σk)

are Lagrange basis polynomials. We can represent these Lagrange

basis polynomials as follows: lj(t) = D(t)

(t−σj)· 1
vj

, where vj = 1/
∏

0≤k≤|C|,k 6=j(σj − σk).

If we choose these σk (k = 1, · · · , |CR|) to follow an arithmetic progression [10], lj(r)

(j = 1, · · · , |CR|) can be evaluated in total time of (fdiv + 4f)|CR|. (Computing 1/vj+1

from 1/vj requires only two operations and computing 1/v0 uses |CR| multiplication.

Recall that D(r) is computed already. Finally, to get each lj(r), a multiplication and one

division are needed.) Given that both the evaluation of D(r) and lj(r) are independent

of the underlying circuit, we can amortize the cost of the evaluation into all circuits of

the same size.

The remaining work is to evaluate Ai(r), Bi(r), Ci(r) from the Lagrange polyno-

mials lj(r) (j = 1, · · · , |CR|). But this is reduced to merely several additions of lj(r)

polynomials – note that the coefficients aij, bij, cij are all either 0 or 1. The number of

wires in the circuit that can contribute to the multiplication gates is at most 2|CR|. The

total number of additions to evaluate Ai(r) and Bi(r) is at most the number of wires in

the circuit that can contribute to the multiplication gates. Then, the total number of

additions to evaluate Ai(r) and Bi(r) is at most 2|CR|. The total number of additions

to evaluate Ci(r) is (|WR| + |Y |), since it takes (|WR| + |CR|) · (e + c) to generate the

commitment queries (where, the whole cost of setup is at most (|WR|+ |CR|) · (e+c)/β+

(fdiv + 5f) · |CR|/β + (2|CR|+ |WR|+ |Y |) · g/β), where g is the cost of addition over a

finite field. Since g is small, we omit addition cost in the tables of cost, as Zaatar [10]

does.

Compared to Zaatar, RIVER introduces an extra cost of (fdiv+5f)·|CR|/β+(2|CR|+

|WR| + |Y |) · g/β to the total cost of setup. However, notice that this part of the

computation can be amortized over many different circuits, which only share the same

size, rather than over many different instances of the same circuit. Thus, RIVER actually
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introduces a negligible cost in the setup phase.

Linearity Query Generation

The cost of generating the linearity queries for πH is ρ ·ρlin ·2 · |CR| ·c/(β ·γ). Another

group of linearity queries are for the proof πW . The cost of generating these linearity

queries is ρ · ρlin · 2 · |WR| · c/(β · γ). Thus, the total cost of generating linearity queries

amounts to ρ · ρlin · 2 · (|CR|+ |WR|) · c/(β · γ).

Divisibility Query Generation, Decommitment Query Generation and De-

commitment Test

These are straight-forward, we omit these for simplicity.

Non-amortized Costs

From the construction above, we draw the following observations:

• For i = 1, · · · , n, we have Ci(t) = 0 for any t ∈ F, since the inputs of the circuit

cannot be outputs of multiplication gates.

• For i = n+ 1, · · · , n+ n′, we have Ai(t) = 0 for any t ∈ F, since the outputs of the

circuit Ψ′ cannot be inputs to multiplication gates.

• For i = n+ 1, · · · , n+n′, we have Bi(t) = 0 for any t ∈ F, since the outputs of the

circuit Ψ′ cannot be inputs to multiplication gates.

Thus, the verifier’s cost in the decision making stage (computing pA, pB, pC) is merely

ρ · (2|X|+ |Y |) · f .

Comparison with Zaatar

We list the amortized and non-amortized cost of both RIVER and Zaatar in Table

5.6. At this time, it is useful to take WR = WZ and CR = CZ .
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We can see that, both the amortized and non-amortized cost of RIVER are less than

Zaatar. For the amortized part, which is known as the investment, even for cases when

β = 1 and γ = 1, the cost of RIVER is less than Zaatar. ( To have a clear picture,

we look at a real example: computing xA where the input x is a 1 × M vector and

A is a fixed M × M matrix. This is widely used in all kinds of scientific computing

such as communications, signal processing, and control systems, and is a basic operation

of many computations. We use previously published models ([10]) and instantiate the

costs as in Table 5.6. From the instance, for M > 5000, We see the amortized cost in

RIVER is at least 28% less than that in Zaatar. For M < 5000, the improvement is even

greater.) Since the same part of the amortized cost in RIVER and Zaatar is dominated

by linearity test queries, if we apply the query compressing technique in Ginger ([37]),

RIVER will have a more significant improvement compared to Zaatar.

5.5.2 The Prover

The method to construct the proof vector is the same as that in Zaatar. The cost is

T+3f · |CR| · log2|CR|. We omit the details here. The remaining cost is from the fact that

the prover needs to compute the coefficients of Ai(t), Bi(t), and Ci(t), (i = 0, 1, · · · ,m).

However, this could be amortized. First, remember that each of Ai(t), Bi(t) and Ci(t),

(i = 0, 1, · · · ,m) are sums of several Lagrange basis polynomials. The cost to get the

coefficients of the Lagrange basis polynomials is independent of the underlying circuit and

can be amortized into all circuits of the same size and is negligible. Second, similarly to

Section 5.2, the number of additions of Lagrange basis polynomials is at most 2|Ψ|+ |Y |.

Each Lagrange basis polynomials has degree at most |CR|. Thus, for each instance, the

cost of computing the coefficients is at most (2|Ψ|+ |Y |) · |CR| · g/β, where g is the cost

of addition over the field F. As in Zaatar [10], we omit the addition cost.

When the prover issues the PCP responses, he needs to respond to not only queries for

πW and πH , but also queries for π
(i)
A , π

(i)
B , π

(i)
C , (i = 0, 1, · · · ,m) and πD. The cost for the
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former is (h+1)·(|WR|+|CR|)+ρ·(3|WR|+|CR|)·f+ρlin ·3·(|WR|+|CR|)·ρ·f . Given that

the length of the latter is |CR| and these responses do not depend on underlying circuit

or the proof vector πW , the cost to compute the responses for the latter can be amortized

into all instances of the same circuit size. This cost is [h+ ρ · (3m+ 4) · f ] · |CR|/(β · γ).

The comparison in terms of the prover’s cost is in Table 5.7. We also use the com-

putation example in Section 5.5.1 to demonstrate the improvement. For any M > 100,

RIVER’s non-amortized cost of the prover is almost the same as that of Zaatar. We

demonstrate the results using M = 10000. Although RIVER introduces amortized cost,

it becomes negligible since it can be amortized into all instances of the same circuit size.

5.6 Conclusions

The state-of-the-art designs such as Pepper/Ginger/Zaatar combine a commitment

protocol to a linear PCP, achieving breakthroughs in verifiable computation. However,

the high computation, communication and storage costs still keep general verifiable

computation away from practicality. In this chapter, we presented a new verifiable-

computation protocol called RIVER. We show that RIVER reduces the amortized com-

putational costs of the verifier. Namely, the number of batched instances of the protocol,

required for amortization, will largely decrease. RIVER introduces a negligible increase

in the prover’s costs. Specifically, the increased amortized cost can be amortized over

instances of different circuits of the same size. Thus, this part can be done only once,

but used for all possible verifications.

In addition, for the first time in the context of verifiable computation, we address the

problem of reducing the informational costs. RIVER removes the requirement that the

verifier has to access the circuit description during query generating. Furthermore, this

feature of RIVER can be viewed as a first step towards applying QAP-based arguments

to the secure outsourcing of verification.
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Table 5.6 Comparison of Cost for Verifier in Each Instance

Ginger Zaatar RIVER

Setup: Commit |WG| · e/(β · γ) (|WZ | + |CZ |) · e/(β · γ) (|WR|+ |CR|) · e/(β · γ) + (fdiv +

5f) · |CR|/(β · γ)

Linearity Query Genera-

tion

ρ · ρlin · 2 · (|CG| + |CG|2) ·

c/(β · γ)

ρ · ρlin · 2 · (|WZ |+ |CZ |) · c/(β · γ) ρ · ρlin · 2 · (|WR|+ |CR|) · c/(β · γ)

Other PCP Query Genera-

tion

ρ · (c · |CG| + f ·K)/β ρ · [c+ (fdiv + 5f) · |CZ |+ f ·K +

3f ·K2]/β

ρ · |CR| · f/(β · γ)

Decommitment Query

Generation

ρ · L · f/β ρ·(ρlin ·3·(|WZ |+|CZ |)+(3|WZ |+

|CZ |)) · f/β

ρ·(ρlin ·3·(|WR|+|CR|)+(3|WR|+

|CR|)) · f/β

Decommitment Test d + ρ · L · f d + ρ · (ρlin · 6 + 4) · f 2d+ρ·(ρlin·6+4)·f+ρ·(3m+4)·f/β

Decision Making ρ · (|X| + |Y |) · f ρ · (3|X| + 3|Y |) · f ρ · (2|X| + |Y |) · f

Total non-amortized cost d + ρ · (L + |X| + |Y |) · f 2d+ρ ·f · (3|X|+3|Y |+ρlin ·6+4) 2d+ ρ · f · (2|X|+ |Y |+ ρlin · 6 + 4)

Total amortized cost |WG| · e/(β · γ) + ρ · ρlin · 2 ·

(|CG|+ |CG|2) · c/(β ·γ)+ρ ·

c · |CG|/β + ρ · (L+K) · f/β

(|WZ |+ |CZ |) · e/(β · γ) + ρ · ρlin ·

2 · (|WZ |+ |CZ |) · c/(β ·γ) + ρ · [c+

(fdiv) · |CZ |]/β+ (ρlin ·3 · (|WZ |+

|CZ |)+(3|WZ |+6|CZ |+K+3K2))·

ρ · f/β

(|WR|+ |CR|) ·e/(β ·γ)+ρ ·ρlin ·2 ·

(|WR|+ |CR|) · c/(β · γ) + (ρlin · 3 ·

(|WR|+ |CR|) + (3|WR|+ |CR|) +

3m + 4) · ρ · f/β + ((fdiv + 5f) ·

|CR| + ρ · |CR| · f)/(β · γ)

CG: set of constraints in Ginger |WG|: number of variables in the constraints (excluding inputs

and outputs) in Ginger

CZ : set of constraints in Zaatar |WZ |: number of variables in the constraints (excluding inputs

and outputs) in Zaatar

CR: set of constraints in our design |WR|: number of variables in the constraints (excluding inputs

and outputs) in our design

|X|: number of input |Y |: number of output

g: cost of addition over F L: number of PCP queries in Ginger

β: number of batching γ: number of circuits of the same size.

ρ: number of iteration of verification for one instance ρlin: number of iterations of linearity tests in one iteration of

verification.

fdiv : cost of division over F f : cost of multiplication over F

c: cost of pseudorandomly generating an element in F

d: cost of decryption over F e: cost of encryption over F

K: number of additive terms in the constraints of Ginger K2: number of distinct additive degree-2 terms in the con-

straints of Ginger
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Table 5.7 Comparison of Cost for Prover in Each Instance

Ginger Zaatar RIVER

Construct

proof

T + f · |WG|2 T+3f ·|CZ |·log2|CZ | T + 3f · |CR| · log2|CR|

32s + 3.2× 109s 32s + 3.2× 104s 32s + 3.2× 104s

Issue PCP re-

sponses

(h + (ρ · L + 1) · f) ·

(|CG| + |CG|2)

(h+ (ρ · L′ + 1) · f) ·

(|CZ | + |WZ |)

(h+1)·(|WR|+|CR|)+ρ·(3|WR|+|CR|)·f+ρlin ·3·

(|WR|+|CR|)·ρ·f+[h+ρ·(3m+4)·f ]·|CR|/(β · γ)

2.9× 1012s 5.78× 104s 5.79× 104s + 7.7×1010
(β·γ) s

T : cost of computing the task h: cost of ciphertext add plus multiply

L = 3ρlin + 2: number of (high order) PCP queries in Ginger

L′ = 6ρlin + 4: number of PCP queries in Zaatar
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CHAPTER 6. BLOCK PROGRAMS: IMPROVING

EFFICIENCY OF VERIFIABLE COMPUTATION FOR

CIRCUITS WITH REPEATED SUBSTRUCTURES

6.1 Problem Statement

If viewing cloud computing from the high-level perspective, two parties are involved:

the client V , who is computationally weak, has computation tasks to be delegated to

the cloud; the cloud server P , who is computationally powerful, provides computing ser-

vices to the client. After receiving the computation task, P performs the computation

and returns the results to V . Later, V runs the verification protocol with P to ensure

the correctness of the returned result. The computation task is a piece of code writ-

ten in a high-level programming language. In the verification stage, this piece of code

is transformed into an arithmetic circuit form. Existing compilers can turn high-level

programs into (non-deterministic) circuits [9, 10, 14]. Since this phase is outside the

scope of the current chapter, we directly assume the computation task is formalized into

an arithmetic circuit in the verification stage. We assume this piece of code is a loop

program and in the verification stage, this program is formalized into a loop circuit (we

will further illustrate loop circuits in Section 6.3).
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6.2 Our Theoretical Results: Block Programs (BPs)

Just as QSPs are a natural extension of span programs (SPs) [62], our new form of

arithmetization which we call Block Programs (BPs), is a natural extension of Quadratic

Arithmetic Programs (QAPs). We focus on a kind of general circuits, which may be

an arithmetic circuit or a boolean circuit, that is composed of identical units. This

elementary unit, which we call block, can be a simple NAND gate. But it is more

common to be a more complex sub-circuit. This kind of sub-circuit can be multiple-

input-multiple-output. The sub-circuits can be viewed as pseudo-gates, a generalized

form of gates. Consider a scenario where the whole circuit is composed of this kind

of sub-circuits just like in Figure 6.1, where all blocks are identical. We define BPs as

follows.

Definition 2. (Block Programs)(BPs, Generalization of Quadratic Arithmetic Programs

(QAPs) [13])

We assume that a circuit computing a function Ψ : FN 7→ FN ′ is composed of identical

blocks, all of which compute the same function: ψ : FV 7→ FM . (ψ implies M functions

ψj : FV 7→ F where j = 1, 2, · · · ,M . Each of these M functions is associated to one of

the outputs of ψ.)

A BP Q over field F contains V sets of W polynomials: {A1w(t)}, {A2w(t)}, · · · ,

{AV w(t)}, and M sets of W polynomials : {B1w(t)}, {B2w(t)}, · · · , {BMw(t)}, for

w ∈ {1, · · · ,W}, and a target polynomial D(t). We say Q computes Ψ using block ψ if

the following holds:

(z1, z2, · · · , zN+N ′) ∈ FN+N ′ is a valid assignment of Ψ’s inputs and outputs, if

and only if there exist coefficients zN+N ′+1, · · · , zW such that D(t) divides Pj(t), (j =

1, · · · ,M), where

Pj(t) = ψj

(
W∑
w=1

zw · A1w(t), · · · ,
W∑
w=1

zw · AV w(t)

)
− [

W∑
w=1

zw ·Bjw(t)]. (6.2.1)
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Z1 Z2 Z3 Z4 Z5 Z6

Z7 Z8 Z9 Z10

Z11 Z12 Z13 Z14

Block No.1 Block No.2

Block No.3 Block No.4

Figure 6.1 Computing through Blocks

Meaning Range

v Index of Input of a Block 1, · · · , V
j Index of Output of a Block 1, · · · ,M
k Index of Blocks 1, · · · ,K
w Index of wires connecting blocks in

the circuit
1, · · · ,W

w1 w is represented as (w1, w2) 1, · · · ,M +Q

w2 w is represented as (w1, w2) 1, · · · ,K
N the number of inputs of the circuit

N ′ the number of outputs of the cir-
cuit

i Index of Direct Input of a Block 1, · · · ,M
u Index of Extra Input of a Block 1, · · · , Q

Figure 6.2 Notations
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In other words, for each j, there exists a polynomial Hj(t) such that D(t) ·Hj(t) = Pj(t),

where j = 1, 2, · · · ,M .

After we define Block Programs, two natural questions are: (1) do such Block Pro-

grams exist? (2) if yes, how to construct Block Programs? Here, we will show the

existence of Block Programs by constructing corresponding BPs by polynomial inter-

polation. In particular, given a circuit that computes Ψ and is composed of identical

blocks denoted by ψ : FV 7→ FM as above, we firstly construct a group of interpolation

polynomials in Lagrange form. Then, we prove that the constructed polynomials form

the BP that computes Ψ.

Suppose the circuit is composed of K blocks. We pick an arbitrary value σk for each

block. When we pick these K values from F, we make sure all these values are different

from each other. We define the target polynomial as follows: D(t) =
∏K

k=1(t − σk).

Now we consider the set of all the inputs of the circuit, and all the outputs of each

block. Firstly, we label each input of the whole circuit and each output from a block

with an index w, where w ∈ {1, 2, · · · ,W} and W is the total number of all wires,

namely, all the inputs of the whole circuit and all the outputs of each block. We can

easily deduce that W = N + K · M . (Recall that N is the number of inputs to the

whole circuit, K is the number of blocks, and M is the number of outputs from a block)

Then the values of each input of the whole circuit and each output from a block can

be denoted by zw. Secondly, we assign V + M interpolation polynomials in Lagrange

form to each wire, indicating whether the corresponding value zw is the v-th input,

or the j-th output of each block, where v = 1, 2, · · · , V and j = 1, 2, · · · ,M . These

polynomials indeed determine how these blocks are interconnected. Thus, the resulting

set of polynomials is a complete description of the original circuit. Specifically, we let

the polynomials {Avw(t)} (for w = 1, 2, · · · ,W ) encode the v-th input into each block,

where v = 1, 2, · · · , V and let {Bjw(t)} (for w = 1, 2, · · · ,W ) encode the j-th output



www.manaraa.com

72

from each block, where j = 1, 2, · · · ,M . In particular, we let

Avw(σk) =


1 if zw is the v-th input to the k-th block;

0 otherwise.

(6.2.2)

Bjw(σk) =


1 if zw is the j-th output from the k-th block;

0 otherwise.

(6.2.3)

Based on the evaluations at the K values σ1, · · · , σK , it is straightforward to construct

{Avw(t)} and {Bjw(t)}, for w = 1, · · · ,W , v = 1, · · · , V , and j = 1, · · · ,M using inter-

polation polynomials in Lagrange form. Let K be the set of indices: K = {1, 2, · · · , K}.

Then,

Avw(t) =
∑
k∈K

Avw(σk) ·

∏
k∗∈K,k∗ 6=k

(t− σk∗)∏
k∗∈K,k∗ 6=k

(σk − σk∗)
, (6.2.4)

and

Bjw(t) =
∑
k∈K

Bjw(σk) ·

∏
k∗∈K,k∗ 6=k

(t− σk∗)∏
k∗∈K,k∗ 6=k

(σk − σk∗)
. (6.2.5)

We can show that {Avw(t)} and {Bjw(t)}, which we have constructed using in-

terpolation polynomials in Lagrange form, constitute a BP that computes Ψ, where

w = 1, 2, · · · ,W , v = 1, 2, · · · , V , and j = 1, 2, · · · ,M .

Theorem 17. For a circuit which computes a function Ψ : FN 7→ FN ′, if the circuit is

composed of identical blocks denoted by ψ : FV 7→ FM , then {Avw(t)} and {Bjw(t)} con-

structed above constitute a BP that compute Ψ, where w = 1, 2, · · · ,W , v = 1, 2, · · · , V ,

and j = 1, 2, · · · ,M .

Proof. The rough idea of the proof is as follows. If we evaluate {Avw(t)} and {Bjw(t)}

in σk, for w = 1, 2, · · · ,W , v = 1, 2, · · · , V , and j = 1, 2, · · · ,M , which we have con-

structed, we can observe that this makes the equation (6.2.1) become:

Pj(σk) = ψj(the kth block’s inputs)− (the kth block’s output). (6.2.6)
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This means that if the output is correct, then Pj(σk) = 0. Namely, σk is a root of Pj(t),

which in turn means that (t − σk) divides Pj(t), which sets up the divisibility by D(t).

The rigorous proof is in Section 6.5.1.

Here, we give a concrete example to demonstrate how we build the BPs for the circuit

in Figure 6.1.

Let us take the circuit in Figure 6.1 as a concrete example to demonstrate how we

build the corresponding BPs. The corresponding BP is demonstrated in Table 6.1. The

polynomials are determined by the evaluations at the four values σ1, σ2, σ3, σ4 (this tuple

is denoted by Σ in Table 6.1), which are associated with the four blocks. First, given that

there are four blocks, we select four distinct values: σ1, σ2, σ3, σ4 ∈ F, each associated

with the corresponding block. The number of blocks also implies the degree of the BP:

four. Given that each block has three inputs and two outputs, the BP has five sets

of polynomials. We take the circuit’s input/output wires and all the blocks’ output

wires into account. Given the number of these wires is fourteen, each set has fourteen

polynomials. Second, we construct these polynomials based on each wires contributions

to the blocks, according to the interconnection of the blocks in the circuit schematic.

More specifically, for v = 1, 2, 3, w = 1, 2, · · · , 14, and k = 1, 2, 3, 4, we let Avw(σk) =

1 if zw is the v-th input to the k-th block, and Avw(σk) = 0 otherwise; we also let

Bjw(σk) = 1 if zw is the j-th output from the k-th block, and Bjw(σk) = 0 otherwise.

For instance, since Z11 is the first input to both Block No.3 and Block No.4, A1,11(σ3) = 1

and A1,11(σ4) = 1. since Z13 is the first output from Block No.2, B1,13(σ2) = 1. Hence, we

can simply generate a table of the polynomials’ evaluations at σ1, σ2, σ3, σ4 as in Table

6.1. Thirdly, we construct the polynomials using the interpolation polynomials in the

Lagrange form. For example, the evaluation of A1,1(t) at the four values σ1, σ2, σ3, σ4

are (1, 0, 0, 0). Then, we have A1,1(t) = (t−σ2)(t−σ3)(t−σ4)
(σ1−σ2)(σ1−σ3)(σ1−σ4)

. In essence, the polynomials

in the BP are defined in terms of their evaluations at the values which we pre-select for

each block.
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Table 6.1 BP of the circuit

Σ Σ Σ Σ Σ

A1,1(t) (1, 0, 0, 0) A2,1(t) (0, 0, 0, 0) A3,1(t) (0, 0, 0, 0) B1,1(t) (0, 0, 0, 0) B2,1(t) (0, 0, 0, 0)

A1,2(t) (0, 0, 0, 0) A2,2(t) (1, 0, 0, 0) A3,2(t) (0, 0, 0, 0) B1,2(t) (0, 0, 0, 0) B2,2(t) (0, 0, 0, 0)

A1,3(t) (0, 0, 0, 0) A2,3(t) (0, 0, 0, 0) A3,3(t) (1, 0, 0, 0) B1,3(t) (0, 0, 0, 0) B2,3(t) (0, 0, 0, 0)

A1,4(t) (0, 1, 0, 0) A2,4(t) (0, 0, 0, 0) A3,4(t) (0, 0, 0, 0) B1,4(t) (0, 0, 0, 0) B2,4(t) (0, 0, 0, 0)

A1,5(t) (0, 0, 0, 0) A2,5(t) (0, 1, 0, 0) A3,5(t) (0, 0, 0, 0) B1,5(t) (0, 0, 0, 0) B2,5(t) (0, 0, 0, 0)

A1,6(t) (0, 0, 0, 0) A2,6(t) (0, 0, 0, 0) A3,6(t) (0, 1, 0, 0) B1,6(t) (0, 0, 0, 0) B2,6(t) (0, 0, 0, 0)

A1,7(t) (0, 0, 0, 0) A2,7(t) (0, 0, 0, 0) A3,7(t) (0, 0, 0, 0) B1,7(t) (0, 0, 1, 0) B2,7(t) (0, 0, 0, 0)

A1,8(t) (0, 0, 0, 0) A2,8(t) (0, 0, 0, 0) A3,8(t) (0, 0, 0, 0) B1,8(t) (0, 0, 0, 0) B2,8(t) (0, 0, 1, 0)

A1,9(t) (0, 0, 0, 0) A2,9(t) (0, 0, 0, 0) A3,9(t) (0, 0, 0, 0) B1,9(t) (0, 0, 0, 1) B2,9(t) (0, 0, 0, 0)

A1,10(t) (0, 0, 0, 0) A2,10(t) (0, 0, 0, 0) A3,10(t) (0, 0, 0, 0) B1,10(t) (0, 0, 0, 0) B2,10(t) (0, 0, 0, 1)

A1,11(t) (0, 0, 1, 1) A2,11(t) (0, 0, 0, 0) A3,11(t) (0, 0, 0, 0) B1,11(t) (1, 0, 0, 0) B2,11(t) (0, 0, 0, 0)

A1,12(t) (0, 0, 0, 0) A2,12(t) (0, 0, 1, 0) A3,12(t) (0, 0, 0, 0) B1,12(t) (0, 0, 0, 0) B2,12(t) (1, 0, 0, 0)

A1,13(t) (0, 0, 0, 0) A2,13(t) (0, 0, 0, 0) A3,13(t) (0, 0, 1, 1) B1,13(t) (0, 1, 0, 0) B2,13(t) (0, 0, 0, 0)

A1,14(t) (0, 0, 0, 0) A2,14(t) (0, 0, 0, 1) A3,14(t) (0, 0, 0, 0) B1,14(t) (0, 0, 0, 0) B2,14(t) (0, 1, 0, 0)

6.3 Our Scheme: Interactive Verification for Loops

In this section, we use the previously described Block Programs to develop the full

solution to the verification of a “loop” computation. Since the theoretical results in

Section 6.2 apply to all general circuits that have repeated substructures, which are not

limited to those circuits that a piece of “loop” code is mapped to, we are not directly

ready for designing the verification protocol for a “loop” computation. Thus, in Section

6.3.1, we further refine the theoretical results we have developed in Section 6.2, to loop-

specific results which are more appropriate for the blocks to which a piece of “loop” code

is mapped. Then, in Section 6.3.2, we demonstrate our verification protocol for “loop”

computations using Block Programs.

6.3.1 Theoretical Results for Loop Circuits

As stated in Section 6.1, the computation task is a piece of “loop” code written

in a high-level programming language. In the verification stage, this piece of code is

transformed into an arithmetic circuit form using existing compilers such as [9, 10, 14].

We call this arithmetic circuit which we map a piece of “loop” code to a loop circuit.
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Figure 6.3 A Loop Circuit
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Figure 6.4 One Single Block

It is straightforward to abstract the structure of this circuit as follows. As shown in

Figure 6.3, a loop circuit is a series of identical blocks, the output of each of which serves

as the input for the next. Each block, which is an arithmetic circuit or boolean circuit, is

actually an execution of the loop body of the original “loop” code. Meanwhile, since each

execution of the loop body may have extra inputs from the outside of the whole piece

of code, (e.g. in the big data processing scenarios) each block may have corresponding

extra inputs from the outside of the circuit. The block is demonstrated in Figure 6.4,

where EX
(2)
1 , EX

(2)
2 , · · · , EX(2)

Q are the extra inputs.

In Section 6.2, we show that for a circuit that has repeated substructures there exists

a BP that computes that circuit. We have already introduced the theoretical results

that show how to construct the corresponding BP, and how to determine whether a

given inputs/outputs tuple is valid for that circuit using BPs. Since a loop circuit has
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repeated substructures, we can easily apply our previous results to loops.

Now, we consider a loop circuit as shown in Figure 6.3. The circuit’s functionality is

to compute a function Ψ : FM+K·Q 7→ FM . The circuit is composed of identical blocks as

shown in Figure 6.4, denoted by ψ : FM+Q 7→ FM . The block ψ can also be formulated

as M functions: ψj : FM+Q 7→ F, for j = 1, 2, · · · ,M . By Theorem 17, we can construct

a BP Q that computes Ψ, where Q consists of a target polynomial D(t), M + Q sets

of K · (M + Q) + M polynomials (See Figure 6.2 for notations): {A1,w(t)}, {A2,w(t)},

· · · , {AM,w(t)}, and M sets of K · (M +Q) +M polynomials: {B1,w(t)}, {B2,w(t)}, · · · ,

{BM,w(t)}, where w is the index which represents the labels of wires and K ·(M+Q)+M

is the number of the wires.

Since a “loop” circuit has a regular structure, we label the wires with a pair of indices

and get explicit expressions of the corresponding Block Programs. Then we can simplify

these Block Programs into succinct expressions denoted by Ak(t), k = 1, 2, · · ·K. Namely,

we let w be (w1, w2) and denote each wire by Zw1,w2 as shown in Figure 6.3. Correspond-

ingly, each polynomial in Q is denoted by {Av,(w1,w2)(t)} or {Bj,(w1,w2)(t)} where v, w1 ∈

{1, 2, · · · ,M,M + 1, · · · ,M + Q}, j ∈ {1, 2, · · · ,M}, and w2 ∈ {1, 2, · · · , K + 1}. The

explicit expressions of Q are as follows: Let K be the set of indices, K = {1, 2, · · · , K}.

If σ1, σ2, · · · , σK are distinct values, each of which is picked from F, then,

Av,(w1,w2)(t) =
∑
k∈K

Av,(w1,w2)(σk) ·

∏
k∗∈K,k∗ 6=k

(t− σk∗)∏
k∗∈K,k∗ 6=k

(σk − σk∗)
(6.3.1)

and

Bj,(w1,w2)(t) =
∑
k∈K

Bj,(w1,w2)(σk) ·

∏
k∗∈K,k∗ 6=k

(t− σk∗)∏
k∗∈K,k∗ 6=k

(σk − σk∗)
, (6.3.2)

where Av,(w1,w2)(σk) and Bj,(w1,w2)(σk) are determined by the interconnection of the blocks

in the circuit: Av,(w1,w2)(σk) is 1 if Zw1,w2 is the v-th input of the k-th block and 0 oth-

erwise; Bj,(w1,w2)(σk) is 1 if Zw1,w2 is the j-th output from the k-th block and 0 other-
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wise. From the circuit’s structure, we can simplify above as follows: Av,(w1,w2)(σk) is 1 if

w1 = v, w2 = k and 0 otherwise; Bj,(w1,w2)(σk) is 1 if w1 = j, w2 = k+ 1 and 0 otherwise.

Thus,

Av,(w1,w2)(t) =


Q

k∈K,k 6=w2

(t−σk)Q
k∈K,k 6=w2

(σw2−σk)
if w1=v,and

1≤w2≤K,

0 otherwise

. (6.3.3)

Bj,(w1,w2)(t) =


Q

k∈K,k 6=w2−1
(t−σk)Q

k∈K,k 6=w2−1
(σ(w2−1)−σk)

if w1=j, and
2≤w2≤K+1,

0 otherwise

. (6.3.4)

If we define

Ak(t) =

∏
k′∈K,k′ 6=k

(t− σk′)∏
k′∈K,k′ 6=k

(σk − σk′)
(6.3.5)

then, the block program can be expressed by Ak(t) where k = 1, 2, · · · , K:

Av,(w1,w2)(t) =


Aw2(t) if w1 = v, 1 ≤ w2 ≤ K

0 otherwise.

(6.3.6)

Bj,(w1,w2)(t) =


Aw2−1(t) if w1 = j, 2 ≤ w2 ≤ K + 1

0 otherwise.

(6.3.7)

If we express the corresponding Block Programs by these Ak(t), instantiate the wire

values, and plug them into Definition 2, we directly have the following result for loop

circuits.

Corollary 18. We consider a loop circuit which computes a function Ψ : FM+K·Q 7→ FM .

As in Figure 6.3, this loop circuit is composed of successive blocks which are identical

and denoted by ψ : FM+Q 7→ FM . Naturally, the block can be formulated as M functions:
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ψj : FM+Q 7→ F, j = 1, 2, · · · ,M . Let Q be the block program that computes Ψ using

block ψ. Then, for inputs (Z1,1, Z2,1, · · · , ZM,1) ∈ FM and the extra inputs ZM+1,1, ZM+2,1,

· · · , ZM+Q,1, · · · , ZM+1,K, ZM+2,K, · · · , ZM+Q,K, all of which are in F, the corresponding

outputs of the circuit are (Z1,K+1, Z2,K+1, · · · , ZM,K+1) ∈ FM , iff there exist coefficients

(they are actually the inner wire values) (Z1,2, · · · , ZM,2) ∈ FM , (Z1,3, · · · , ZM,3) ∈ FM ,

· · · , (Z1,K , · · · , ZM,K) ∈ FM such that D(t) divides Pj(t) (j = 1, 2, · · · ,M) where

Pj(t) =ψj

( K∑
k=1

Z1,k · Ak(t), · · · ,
K∑
k=1

ZM,k · Ak(t),
K∑
k=1

ZM+1,k · Ak(t), · · · ,
K∑
k=1

ZM+Q,k · Ak(t)
)

−

(
K∑
k=1

Zj,k+1 · Ak(t)

)
. (6.3.8)

In other words, there exists a polynomial Hj(t) for each Pj(t) (j = 1, 2, · · · ,M), such

that D(t) ·Hj(t) = Pj(t).

Proof. Since the loop circuit is a circuit which is composed of identical blocks, by Def-

inition 2, for the purported intermediate wire values (Z1,2,· · · ,ZM,2), (Z1,3,· · · ,ZM,3), · · · ,

(Z1,K ,· · · ,ZM,K), it suffices to prove (6.3.8) is equivalent to (6.2.1) in the context of loop

circuits. In the context of loop circuits, (6.2.1) is:

Pj(t) =ψj

(M+Q∑
w1=1

K+1∑
w2=1

Zw1,w2 · A1,(w1,w2)(t), · · · ,
M+Q∑
w1=1

K+1∑
w2=1

Zw1,w2 · AM+Q,(w1,w2)(t)

)

−

(
M+Q∑
w1=1

K+1∑
w2=1

Zw1,w2 ·Bj,(w1,w2)(t)

)
. (6.3.9)

If we instantiate Av,(w1,w2)(t), Bj,(w1,w2)(t) using (6.3.6) and (6.3.7), we immediately get

(6.3.8). The conclusion follows.

6.3.2 Our Interactive Verification for Loops

Corollary 18 implies a way to verify a result computed by a “loop” circuit using

BPs. To convince V that the result is correct, by the Corollary 18, it suffices to show

the existence of those intermediate results and the polynomial Hj(t) which satisfy the

divisibility D(t) ·Hj(t) = Pj(t).
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The divisibility itself can be checked probabilistically: for polynomials Pj(t), Hj(t)

and D(t), V randomly picks τ ∈ F and checks whether D(τ) · Hj(τ) = Pj(τ). (We will

show how to evaluate D(τ), Hj(τ) and Pj(τ) later.) If the result is correct, P must be

able to find Hj(t) such that Pj(t) = Hj(t)·D(t), then for any τ ∈ F, D(τ)·Hj(τ) = Pj(τ).

If the result is not correct, then for any Hj(t), D(τ) ·Hj(τ) 6= Pj(τ) except with a small

probability.

To check the existence of the intermediate results and the polynomial Hj(t), one naive

idea is to let P output the intermediate results and Hj(t), and let V evaluate Hj(τ) and

use the intermediate results to check the divisibility. Instead of this expensive approach,

we use a “commit and query” method. Roughly speaking, we have P commit to the

intermediate results and Hj(t) first. Then, when V needs to use the intermediate results

and Hj(τ), he will query P to get purported values and finally check the divisibility. (We

will show the “commit and query” method in details later.)

Now we show how we evaluate D(τ), Hj(τ) and Pj(τ). For D(τ), V can construct

D(t) himself and evaluate D(τ) himself. In our protocol, neither V nor P will materialize

Pj(τ). Pj(t) involves three sets of polynomials: the polynomials that abstract the outputs

of the blocks: Gj(t) =
∑K

k=1 Zj,k+1 · Ak(t), j = 1, 2 · · ·M ; the polynomials that abstract

the inputs of the blocks: fINi(t) =
∑K

k=1 Zi,k · Ak(t), i = 1, 2 · · ·M ; and the polynomials

that abstract the extra inputs of the blocks: fEXu(t) =
∑K

k=1 EX
(1)
[(k−1)·Q]+u · Ak(t), u =

1, 2, · · · , Q, where EX
(1)
(k−1)·Q+u = Zu+M,k. V can construct fEXu(t) and evaluate fEXu(τ)

himself. We observe that Gj(t) and fINi(t) are the only parts in the divisibility equation

(6.3.8) that involve the intermediate results. When evaluating them, neither V nor P

genuinely materializes the polynomial. We view Gj(t), fINi(t) and Hj(t) to be linear

functions, denoted by πGj (j = 1, · · · ,M), πINi (i = 1, · · · ,M), πHj (j = 1, · · · ,M),

respectively. We have P commit to them first1, then have V evaluate these polynomials

through querying P on these committed functions, as in [8, 9, 10]. More specifically,

1Since the commit/decommit and corresponding linearity tests are mature techniques as in [8, 9, 10],
we omit the details here
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as a PCP style protocol, in our protocol, P holds a proof l and V holds a query q.

When queried with q, P responds with the evaluation of the linear function π(q) =

〈l, q〉 (where 〈·, ·〉 is the inner product of two vectors), which should be the evaluation

of l(t) at the point t = τ . For example, if l represents the coefficient vector of the

polynomial l(t) and q = (1, τ, τ 2, · · · , ), then π(q) is l(τ). To evaluate Gj(τ), V queries

P with: qG = (A1(τ), A2(τ) · · · , AK−1(τ)). To evaluate fINi(τ), V queries P with: qIN =

(A2(τ), A3(τ) · · · , AK(τ)). To evaluate Hj(τ), V queries P with: qH = (1, τ, τ 2, · · · ).

The length of qH is equal to the highest degree of all Hj(t) (j = 1, · · ·M).

So far we have demonstrated all the techniques we will use. Now we show our interac-

tive verification protocol as in Figure 6.5. Note that before verification, V sends the loop

program and (Z1,1, Z2,1, · · · , ZM,1) (ZM+1,1, · · · , ZM+Q,1) · · · (ZM+1,K , ZM+2,K , · · · , ZM+Q,K)

to P ; on these inputs P computes and returns the results: (Z1,K+1, · · · , ZM,K+1). Our

idea is to prove that the wire values between repeated substructures are calculated cor-

rectly, and then prove that the blocks themselves are computed correctly, rather than

trying to verify the entire circuit in one round. Let the loop circuit contain K executions

of the loop body. We view the whole circuit from a two-layer perspective. In the first

layer’s perspective, the circuit consists of one big block, which we call the first layer block

and denote by a function ψ(1) : FM+K·Q 7→ FM . In the second layer’s perspective, the

circuit consists of K smaller blocks, which we call the second layer block and denote by

a function ψ(2) : FM+K·Q/K 7→ FM . Each of the second layer block is one execution of

the loop body. We reduce the task of verifying (for j = 1, 2, · · · ,M)

OUT
(1)
j =ψ

(1)
j (IN

(1)
1 , · · · , IN(1)

M , EX
(1)
1 , · · · , EX(1)

Q·K), (6.3.10)

to the task of verifying (for j = 1, 2, · · · ,M)

OUT
(2)
j = ψ

(2)
j (IN

(2)
1 , · · · , IN(2)

M , EX
(2)
1 , · · · , EX(2)

Q ), (6.3.11)

(where IN
(1)
1 , · · · , IN(1)

M and EX
(1)
1 , · · · , EX(1)

Q·K are respectively the inputs and the extra

inputs to the loop circuit, and OUT
(1)
1 , · · · , OUT(1)

M are the outputs from the loop circuit, as
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Setup
Step 1: V randomly generates τ ∈ F and qH = (1, τ, τ2, · · · , τV ), qG = (A1(τ), A2(τ) · · · , AK−1(τ)), qIN =
(A2(τ), A3(τ) · · · , AK(τ))
Step 2: V generates the commitment query according to the commitment protocol as in Pepper [8], and sends it to
P;
Step 3: V generates σ1, · · · , σK and constructs the BP for the circuit.
Verification

Step 4: Both P and V computes IN
(1)
i , EX

(1)
(k−1)·Q+u

, and OUT
(1)
j : IN

(1)
i ← Zi,1, (i = 1, 2, · · · ,M) ;

EX
(1)
(k−1)·Q+u

← Zu+M,k, where u = 1, 2 · · ·Q and k = 1, 2, · · · ,K; OUT
(1)
j ← Zj,K+1, (j = 1, 2, · · · ,M)

Step 5: P computes intermediate results Zw1,w2 , linear functions πHj , πGj , πINi for all i, j, replies the commitment
information for all proofs.
Step 6: V sends P these queries: qH , qG, qIN ,P replies: πHj (qH), πGj (qG), πINi (qIN ) (i, j ∈ {1, 2, · · · ,M})
Step 7: V checks the linearity of these proofs. If any fails, reject;

Step 8: P sends OUT
(2)
j ; V checks whether OUT

(2)
j = D(τ) ·πHj (qH) +πGj (qG) +AK(τ) · OUT(1)

j , where j = 1, · · · ,M .
If not, reject.

Step 9: V updates IN
(2)
i , i = 1, 2, · · · ,M : IN

(2)
i = πINi (qIN ) + IN

(1)
i · A1(τ); and updates EX

(2)
u by computing:

EX
(2)
u ← fEXu (τ) (u = 1, 2, · · · , Q).

Step 10: P convinces V that OUT
(2)
j = ψ

(2)
j (IN

(2)
1 , · · · , IN(2)

M , EX
(2)
1 , · · · , EX(2)

Q )

Step 11: V performs the decommitment check for every proofs. If any fails, V rejects.
Step 12: If the running of our protocol goes here, accept.

Figure 6.5 Our Verification Protocol

in Figure 6.3; IN
(2)
1 , · · · , IN(2)

M and EX
(2)
1 , · · · , EX(2)

Q are respectively the inputs and extra

inputs to one loop body, and OUT
(2)
1 , · · · , OUT(2)

M are the outputs from that loop body.

See Figure 6.4). To verify (6.3.11), V can compute itself, or let P perform some other

verification protocols like Pinocchio [14], Zaatar [10], etc. We omit the details here.

6.3.3 Security Analysis

Now, we provide the completeness and soundness of our design.

Theorem 19. (Completeness) As in Figure 6.3, for the inputs (Z1,1, Z2,1, · · · , ZM,1),

(ZM+1,1, ZM+2,1, · · · , ZM+Q,1), · · · , (ZM+1,K , ZM+2,K , · · · , ZM+Q,K), and (P ,V) run the

protocol in Figure 6.5. If the results (Z1,K+1, Z2,K+1, · · · , ZM,K+1) are correct, then we

have: Pr{V accepts} = 1.

To prove the completeness(Theorem 19), the idea is to show that an honest prover

is able to provide the correct proof associated with the correct results. This correct

proof will pass all the checks with probability 1. This is straightforward and we omit the

details here. The complete proof is provided in Section 6.5.3.
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Theorem 20. (Soundness) As in Figure 6.3, assume the inputs are (Z1,1, Z2,1, · · · , ZM,1),

(ZM+1,1, ZM+2,1, · · · , ZM+Q,1), · · · , (ZM+1,K , ZM+2,K , · · · , ZM+Q,K), and P and V proceed

according to Figure 6.5.

There exists a constant κ < 1 such that if results (Z1,K+1, Z2,K+1, · · · , ZM,K+1) are not

correct, then Pr{V accepts} < κ holds for any purported proofs. The probability is over

the randomness of both V and P in both phases in our protocol. This is equivalent to: if

Pr{V accepts} > κ, the purported results are correct.

The proof of the soundness is in Section 6.5.2.

6.3.4 Improving the Performance through Batching

One question left over is whether, if V queries different linear proofs, he should re-

generate the queries for each proof. If so, the cost of issuing queries will be prohibitive.

Our idea is to reuse τ and corresponding divisibility query for all linear proofs. We

achieve this by making our protocol work in a batching style, which implies two levels:

(1) same queries work over many computation instances, namely V verifies computation

in batches; (2) for one computation instance, V uses the same τ and corresponding

queries for all proofs in the same layer.

This batching technique was firstly proposed in [8], where V generates one single

commitment query Enc(r)(the query to get the commitment information) and one single

set of PCP queries for β proofs. In the commitment phase, P replies to V with β

pieces of commitment information Enc(s1), Enc(s2), · · · , Enc(sβ), one for each of the β

proofs. In the decommitment phase, V issues the decommitment query based on the

commitment query Enc(r) and the set of PCP queries and receives β answers, one for

each of the β proofs. V will perform the decommitment check separately. It is proved that

this batching technique will not impair the soundness of the verification protocol ([8],

Appendix C, Theorem C.1). This immediately implies the correctness and soundness of

our first level “batching”, as that in [10].
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For the second level of “batching”, we are targeting to use one single commitment

query and one single set of PCP queries for all these proofs. Firstly, we notice that

the bottom line of batching is that P is not allowed to output the answer for one proof

after he learns whether V accepts or rejects another proof (the so-called Verifier Rejection

Problem [58]) Thus, we move all the decommitment tests to the last step in our protocol,

which is performed after all verification is done. Secondly, since our protocol is an

interactive protocol, the soundness holds only under the restriction that V ’s τ and his

verdict in each layer does not help P deviate from the protocol and generate proofs in

the next layer to cheat V . Thus, if we use Zaatar [10] to verify the loop body, we need to

guarantee that the randomly generated number for the divisibility test in Zaatar should

be different from our τ .

6.4 Performance Evaluation

In this section, we analyze the performance of our design and compare it with existing

work. We firstly compare the complexity of the algorithms. Then, we compare the

“experimental results” of our design with all existing work. However, we model, rather

than measure, their performance. For our design, we built a model of our design’s

performance based on the latest performance results for [10], while for the others, we

used previously published models [10, 14].

6.4.1 Performance Analysis and Comparison

We are targeting at reducing the amortized part of cost (for the verifier) and the proof

generation cost (for the prover). Now, in the context of loop circuits, we compare the

cost of our protocol with Zaatar and Pinocchio as in Figure 6.6. We use the published

performance models of Zaatar [10] and Pinocchio [14]. For Pinocchio, we only list the

most burdensome part in Figure 6.6; for Zaatar, given that Zaatar’s circuit is formulated
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into constraints, we view the number of constraints in Zaatar as the number of multipli-

cation gates (circuit size). Then, the number of variables in the constraints (excluding

inputs and outputs) in Zaatar equals the circuit size minus the number of input/output

wires.

Remember that our verification design has two layers, the first layer proves that the

wire values between repeated substructures are calculated correctly, and then the second

layer proves that the blocks themselves are computed correctly. At the second layer in

our protocol, the result of a single execution of the loop body needs to be verified. We use

existing methods as a building block to perform the verification. In Figure 6.6, the last

terms in the column of our design’s cost model (e.g., CZ
na(1), 1

K
CZ
a (K), etc.) represent

the cost for the verification of the loop body in our protocol. In our protocol, if V adopts

Zaatar or Pinocchio as the verification block for the loop body, this part of cost will

usually be only 1
K

of the total cost that V pays if V uses Zaatar or Pinocchio to verify

the whole loop. In particular, the second layer verification(verification of the loop body)

also contains amortized cost, which is linear in the size of the circuit associated with the

loop body. For simplicity, We choose Zaatar to show our cost model.

Now we show why the amortized cost in our protocol is much less that its counterparts

in all existing protocols: our design has the following properties: First, it has more

flexibility in amortizing. Our protocol has a benefit that the first part of amortized cost,

denoted by C∗a , can be amortized over instances which have the same loop structure and

the same degree of the polynomial that the loop body computes. (Notice: these instances

can have different circuits for the loop body, as long as the circuit the loop bodies compute

have the same degree.) This property renders our protocol superior to existing works, in

which costs can only be amortized to instances that share the same circuit. Namely, even

if our amortized cost is the same as its counterparts, our protocol can be amortized to

more instances than other protocols. Second, it has smaller costs. Even if the amortized

part for verifying the loop body, denoted by C†a, counteracts a part of cost, the total
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Zaatar (Loop ver. ) Pinocchio (Loop ver.) Our Algma

V’s Total non-
amortized cost

CZna(K) = 2Dec+ρ · (6M+
3Q ·K + 6ρlin + 4) · Mult

CPna = 11Map Cna(K) = 3M · Dec + ρ ·
(6M + Q · K + 9Mρlin) ·
Mult + CZna(1)

V’s Total amor-
tized cost

CZa (K) = (2K ·C) ·Enc+ρ ·
ρlin · 2 · (2K ·C) · Rand+ ρ ·
[Rand+(Div)·K ·C]+(ρlin ·
3 · (2K ·C) + (3K ·C+ 6K ·
C +K1 + 3K2)) · ρ · Mult

CPa (K) = [10(K · C)] ·
Exp

Ca(K) = (K · D) · [Enc +
2ρ ·ρlin ·(Rand+Mult)+2ρ ·
Mult] + ρ · (Div + 3 · Mult) ·
K + 1

K
CZa (K)

Task Computing Comp Comp Comp

P : Construct
proof vector

CZp (K) = 3Mult · (K · C) ·
log2(K · C)

CPp (K) = 8Muex · (K ·
C)

Cp(K) = 3Mult · (K · D −
K)·log2(K ·D−K)+CZp (1)

P : Issue PCP re-
sponses

CZi (K) = (Oper + (ρ ·
(6ρlin+4)+1) ·Mult) ·(2K ·
C)

N/A Ci(K) = [Oper + (ρ ·
(3ρlin + 2) ·M + 1) · Mult] ·
(K ·D) + CZi (1)

Map: cost of bilinear map in G× G 7→ GT Exp: cost of exponential operation in G
Div: cost of division over F Mult: cost of multiplication over F
Rand: cost of pseudorandomly generating an element
in F

Q: number of the extra input of the loop body

Dec: cost of decryption over F Enc: cost of encryption over F
Comp: cost of evaluating the whole circuit Oper: cost of ciphertext add plus multiply
Muex: cost of multiplication over exponent
ρ: number of iteration of verification for one instance ρlin: number of iterations of linearity tests in one

iteration of verification.
K1: number of additive terms in the constraints of
Ginger, Zaatar’s underlying protocol

K2: number of distinct additive degree-2 terms
in the constraints of Ginger, Zaatar’s underlying
protocol

K: number of executions of the loop body M : the number of input (or output) of the loop
body

D: degree of the polynomial that the loop body com-
putes

C: size of the circuit of the loop body

aNote: the costs of our design are calculated in Section 6.6.1, 6.6.2, and 6.6.3.

Figure 6.6 Comparison of Costs in Each Instance

amortized cost in our protocol is still far less than that of Zaatar in the loop circuit.

Notice the total amortized cost in our protocol is [C∗a + C†a] ∼ [O(K · D) + O(C)].

Zaatar has amortized cost which is linear in the size of the whole circuit, denoted by

CZ
a ∼ O(K · C). Recall that K is the number of executions of the loop body and D is

the degree of the polynomial that the loop body computes. (The loop body is equivalent

to an arithmetic circuit and the arithmetic circuit computes a polynomial.) C is the size

of the circuit that the loop body is equivalent to. We can prove that the amortized cost

in our protocol is usually far less than the amortized cost in existing work.

Although C∗a and CZ
a seems similar, in general, they are largely different. We know

arithmetic circuits are the standard model for computing polynomials. In other words,

an output of an arithmetic circuit is a polynomial in the input variables. The arithmetic
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complexity is characterized by the size of the arithmetic circuit. From the theory of

arithmetic circuit complexity, we know most polynomials have high arithmetic complex-

ity ([63], Section 4). More specifically, a detailed analysis using a counting argument

shows that most polynomials in n variables and degree d require circuits of size at least

Ω(
√(

n+d
d

)
) ([64], Section 3.1). Here most means that the number of polynomials that

have small circuits (i.e. smaller than the lower bound above) is much smaller than the

total number of polynomials. In most cases, to compute an n-variate polynomial of de-

gree d requires a circuit of size at least Ω(
√(

n+d
d

)
). In our context, n = M + Q and

d = D. Then, by this lower bound, C is at least Ω(
√(

M+Q+D
D

)
) which is much more than

D, since Ω

(√(
M+Q+D

D

))
∼ Ω

(√
(M+Q+D)M+Q+D+ 1

2

(M+Q)M+Q+ 1
2 ·DD+ 1

2

)
by Stirling’s approximation. For

Given M and Q, this is an exponential function of D.

Similarly, we improve the prover’s cost of proof generation from quasilinear in the

size of the loop body (like in Zaatar) to quasilinear in the degree of the loop body, with

an additional cost for generating the proof of a single execution of the loop body. This

is also a big improvement according to the analysis above.

6.4.2 An Example for Performance Comparison

To have a clear picture of these costs and how powerful our method is in verification

of real-world iterative computation, we look at a real loop. We look at an example of suc-

cessive matrix multiplication, which is widely used in communications, signal processing,

and control systems. The code to compute: xA0 · · ·AK , where x is a 1 ×K vector and

Ai, (i = 0, · · ·K) are M ×M matrices. It is easy to write this into a “for” loop. Let A

be a 1000×1000 matrix and the number of executions be K = 500. Let the width of the

inputs/outputs be M = 1000, the width of the extra inputs for each execution Q = M2,

and the circuit size of the loop body C = M2. It is easy to see the polynomial that each

loop body computes is quadratic, thus D = 2. We use published models ([10, 14]) and

instantiate the costs as in Figure 6.7. We can see that, for the amortized cost and the
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Zaatar Pinocchio Our Algma

V’s Cost (Non-
amortized)

1.10h 9.9ms 1281s+ 7.70s

V’s Cost (Amor-
tized )

96.76h 164.3h 0.29s+ 696.67s

Task Computing 160s 160s 160s
P: Construct
proof

111.34h 445.56h 38.6ms+ 381s

P: Issue re-
sponses

124.38h N/A 158.8s+ 895.5s

Map: 0.9ms Exp: 118.3µs, fixed
base, optimized for
twist curve

Div: 3µs , 220-bit Mult: 320ns, 220-bit
Rand: 260ns, 220-bit Muex: 401.0µs, 254-

bit, optimized for twist
curve

Oper:130µs, 220-bit
ρ: 8 ρlin: 20
Dec: 170µs , 220 bits Enc: 88µs , 220 bits

aNote: we list the cost for both the first layer and the second layer in our design, connected by “+”.

Figure 6.7 An Loop Example and Its Cost

prover’s cost, our protocol is far superior to the other two. This also implies that in our

protocol smaller breakeven batching size suffices to guarantee that the average cost for

verification per instance is less than re-computing.

6.4.3 Further Discussion

If we examine our protocol carefully, a natural question will arise: why cannot the

block be of size K0 ·C such that K0 6= 1? Moreover, if we group K0 successive executions

of the loop body into large blocks (K0 < K), then we can further group several sequential

big blocks into a bigger block. The whole circuit can be viewed as a multiple-layer

structure. More specifically, we can view the whole circuit as one big block, which

we call the first layer block and denote by a function ψ(1) : FM+K·Q 7→ FM . In the

second layer’s perspective, the circuit consists of K0 smaller blocks, which we call the

second layer block and denote by a function ψ(2) : FM+K·Q/K0 7→ FM . In each layer,

several blocks constitute the circuit. The block in the l-th layer is denoted by a function

ψ(l) : FM+K·Q/(Kl−1
0 ) 7→ FM . The l-th layer block is composed of K0 lower layer blocks,

i.e. the l+1 layer blocks. At the L-th layer, the last layer, each of the blocks is equivalent

to one execution of the loop body. Note that the reduction of our verification can go

further recursively in this multiple-layer view. According to our current protocol, the

correctness of computing ψ(1) is reduced to the correctness of computing ψ(2). Similarly,
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the correctness of computing ψ(2) is reduced to the correctness of computing ψ(3). We

can keep doing this until we meet the last layer. At a first glance, this recursive protocol

seems promising. However, it is the first layer that dominates the cost. This implies

that this method introduces high cost due to the recursion. More specifically, if we have

multiple-layer blocks, then from ψ(1)(·) = ψ(2)(ψ(2)(· · · (ψ(2)(·)) · · · )), we see the degree

of the polynomial a block computes increases exponentially. Simple analysis will show

that the cost of the first layer dominates and therefore the cost for this recursive method

is proportional to O(DK), which is much more than our current protocol. Recall in our

current protocol, the block is one execution of the loop body. Thus, the degree of the

polynomial this block computes is D. This is also the reason why sequential circuits –

where the output of each gate is an input to the next gate – is the worst-case scenario

for our protocol. Such circuits are better tackled with Zaatar, Pinocchio, etc.

6.5 Mathematical Proofs

6.5.1 Complete Proof of Theorem 17

Proof. In Section 6.2, We have constructed a group of interpolation polynomials in La-

grange form. Now, we prove that the constructed polynomials are indeed the BP that

computes Ψ.

(1) (=⇒)

Suppose (z1, z2, · · · , zN+N ′) ∈ FN+N ′ is a valid assignment of Ψ’s inputs and outputs.

Then, there exist intermediate results zN+N ′+1, · · · , zW , which are all the outputs from

each block except those which are also outputs of the whole circuit. Thus, according to

(6.2.1), we can generate Pj(t) for j = 1, 2, · · · ,M using these zw (w = 1, 2, · · · = W ) and

the BP we have constructed above.
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Now we look at Pj(σk) where k = 1, 2, · · · , K.

Pj(σk) =ψj

(
W∑
w=1

zw · A1w(σk), · · · ,
W∑
w=1

zw · AV w(σk)

)

−

(
W∑
w=1

zw ·Bjw(σk)

)
. (6.5.1)

We have constructed Avw(t) and Bjw(t) for v = 1, 2, · · · , V , j = 1, 2, · · · ,M and

k = 1, 2, · · · , K. Recall that in our construction, we let Avw(σk) = 1 if zw is the v-th

input to the k-th block, and Avw(σk) = 0 otherwise; we also let Bjw(σk) = 1 if zw is the

j-th output from the k-th block, and Bjw(σk) = 0 otherwise. Then, if zw†i
is the v-th

input to the k-th block, and zw∗j is the j-th output from the k-th block, we will have:

Pj(σk) =ψj

(
zw†1

, zw†2
, · · · , zw†V

)
−
(
zw∗j

)
. (6.5.2)

(In the example of the circuit in Figure 6.1, if j = 2 and k = 3, then zw†1
is z11, zw†2

is z12, zw†3
is z13, and zw∗2 is z8.)

From the k-th block’s functionality, we know that

ψj

(
zw†1

, zw†2
, · · · , zw†V

)
−
(
zw∗j

)
= 0 (6.5.3)

Thus, for all σk, where k = 1, 2, · · · , K (recall K is the number of blocks in the

circuit), and for j = 1, 2, · · · ,M , we have Pj(σk) = 0. Namely, σk, where k = 1, 2, · · · , K,

are the roots of the polynomials Pj(t), where j = 1, 2, · · · ,M . If we recall the expression

of the target polynomial D(t) =
∏K

k=1(t − σk), it is straightforward that σk, where

k = 1, 2, · · · , K, are the roots of D(t). Given that σk, where k = 1, 2, · · · , K, are

different from each other, we can conclude that D(t) divides Pj(t), for j = 1, 2, · · · ,M .

(2) (⇐=)

Suppose for (z1, z2, · · · , zN+N ′) ∈ FN+N ′ , there exist coefficients zN+N ′+1, · · · , zW such

that D(t) divides Pj(t), (j = 1, 2, · · · ,M), where Pj(t) is defined as in (6.2.1).

Then, each of D(t)’roots is also a root of Pj(t) for j = 1, 2, · · · ,M . Namely, σk, where

k = 1, 2, · · · , K, are also the roots of the polynomials Pj(t), where j = 1, 2, · · · ,M . Thus,
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for k = 1, 2, · · · , K and j = 1, 2, · · · ,M we have:

Pj(σk) = 0 (6.5.4)

This can be represented as

0 =ψj

(
W∑
w=1

zw · A1w(σk), · · · ,
W∑
w=1

zw · AV w(σk)

)

−

(
W∑
w=1

zw ·Bjw(σk)

)
(6.5.5)

Now, we assign (z1, z2, · · · , zN+N ′) to the input/output wires of the circuit. We also

assign zN+N ′+1, · · · , zW to the corresponding output wires of all the blocks.

Recall that in our construction, we let Avw(σk) = 1 if zw is the v-th input to the k-th

block, and Avw(σk) = 0 otherwise; we also let Bjw(σk) = 1 if zw is the j-th output from

the k-th block, and Bjw(σk) = 0 otherwise. Then, if zw†v is the v-th input to the k-th

block, and zw∗j is the j-th output from the k-th block, we can simplify (6.5.5) as follows:

ψj

(
zw†1

, zw†2
, · · · , zw†V

)
−
(
zw∗j

)
= 0 (6.5.6)

This implies that zw†i
where i = 1, 2, · · · ,M and zw∗j where j = 1, 2, · · · ,M is a valid

assignment of the k-th block’s inputs and outputs.

Similarly, for all k = 1, 2, · · · , K, our assignment covers valid inputs and outputs of

the corresponding block. Namely, (z1, z2, · · · , zN+N ′) is a valid assignment of the circuit’s

inputs and outputs.

From (1) and (2), we know that the constructed polynomials are indeed the BPs that

compute Ψ.

6.5.2 Proof of Soundness

To better illustrate the logical flow of the soundness proof, we first provide the fol-

lowing simple experiment. Suppose P must choose between two boxes (the left and the

right box), each containing a number of white balls and black balls. The right box stands
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for the correct proof, while the left box for the wrong proof. White balls represent tests

that pass, black balls represent tests that fail. By the completeness argument, we know

that all the balls in the right box are white. On the other hand, the left box contains

both white and black balls. The prover P chooses one of the boxes, and places it in a

dark room (the room stands for the prover’s commitment). The verifier V has to test the

box, to see whether the prover chose the wrong proof. To accomplish this, V enters the

dark room and picks a ball from the box. Then V exits the room and looks at the ball.

Our proof flows as follows. 1. We first show that if V were to randomly pick a ball from

the left box, then Pr{the ball is white} < κM0 , where κM0 is some small positive constant

(that is, the left box contains mostly black balls). 2. We then reason that, if for the box

in the dark room we have Pr{the ball is white} > κM0 , then the box has to be the right

box.

Our soundness proof is a bit less straightforward. To make it work, we have to first

condition our probabilities on the event that all proofs provided by the prover are linear.

In Lemma 22, we show that, if the verifier provides the wrong result (and consequently the

wrong proof), then Pr{V accepts |all purported proofs are linear } < κM0 . Now looking

back to Theorem 20, to prove the soundness it suffices to show the existence of κ. We start

our proof by providing an explicit value κ∗. It now suffices to prove that, if the probability

that the verifier accepts (not conditioned on anything) is greater than κ∗, then the

purported results are correct. So we show that, if the probability that the verifier accepts

is greater than κ∗, then we have Pr{V accepts |all purported proofs are linear} > κM0 ,

Finally, we bootstrap our argument as above, reasoning that unless the results of the

computation are correct, a contradiction ensues with Lemma 22.

Let us proceed. For simplicity, we extract a part of purely mathematical transforma-

tion from our proof into Lemma 21.
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Lemma 21. In the context of loop circuits (as in Figure 6.3),

D(τ) ·Hj(τ) = ψ
(2)
j

( K∑
k=2

Z1,k · Ak(τ) + IN
(1)
1 · A1(τ), · · · ,

K∑
k=2

ZM,k · Ak(τ) + IN
(1)
M · A1(τ),

K∑
k=1

EX
(1)
[(k−1)·Q]+1 · Ak(τ),

· · · ,
K∑
k=1

EX
(1)
[(k−1)·Q]+Q · Ak(τ)

)
−
(K−1∑
k=1

Zj,k+1 · Ak(t)

+ AK(τ) · OUT(1)
j

)
(6.5.7)

is equivalent to OUT
(2)
j = ψ

(2)
j (IN

(2)
1 , · · · , IN(2)

M , EX
(2)
1 , · · · , EX(2)

Q ), for inputs IN
(1)
1 , · · · , IN(1)

M ,

extra inputs EX
(1)
1 , · · · , EX(1)

Q·K, and outputs OUT
(1)
1 , · · · , OUT(1)

M , and IN
(2)
1 , · · · , IN(2)

M , EX
(2)
1 , · · · , EX(2)

Q ,

OUT
(2)
1 , · · · , OUT(2)

M are defined in terms of τ as in Figure 6.5.

A simple change of variable suffices to prove it.

Lemma 22. Let V and P run our protocol as in Figure 6.5. If the results of the com-

putation task are not correct, for the cases that all purported proofs πGj (j = 1, · · · ,M),

πINi (i = 1, · · · ,M), πHj (j = 1, · · · ,M) are linear functions, we have:

Pr{V accepts |all purported proofs are linear} < κM0 , (6.5.8)

where κ0 = K·D
|F| or κZaatar, D is the degree of the polynomial that computes the loop

body and K is the number of executions of the loop body. The probability is over the

randomness of both V and P in both phases our protocol.

Proof. Under the condition that all purported proofs πGj (j = 1, · · · ,M), πINi (i =

1, · · · ,M), πHj (j = 1, · · · ,M) are linear functions, all the linearity tests pass. Then, V

accepts if

OUT
(2)
j = ψ

(2)
j (IN

(2)
1 , · · · , IN(2)

M , EX
(2)
1 , · · · , EX(2)

Q ). (6.5.9)
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This is checked by computing himself or using existing protocols, like Zaatar or Pinocchio.

If he computes himself, by Lemma 21, the verifier accepts only when the following holds:

D(τ) ·Hj(τ) = ψ
(2)
j

( K∑
k=2

Z1,k · Ak(τ) + IN
(1)
1 · A1(τ), · · · ,

K∑
k=2

ZM,k · Ak(τ) + IN
(1)
M · A1(τ),

K∑
k=1

EX
(1)
[(k−1)·Q]+1 · Ak(τ), · · · ,

K∑
k=1

EX
(1)
[(k−1)·Q]+Q · Ak(τ)

)
−[

K−1∑
k=1

Zj,k+1 · Ak(τ) + AK(τ) · OUT(1)
j ]. (6.5.10)

This is a simple test of the following at the point t = τ :

D(t) ·Hj(t) = ψ
(2)
j

( K∑
k=2

Z1,k · Ak(t) + IN
(1)
1 · A1(t), · · · ,

K∑
k=2

ZM,k · Ak(t) + IN
(1)
M · A1(t),

K∑
k=1

EX
(1)
[(k−1)·Q]+1 · Ak(t), · · · ,

K∑
k=1

EX
(1)
[(k−1)·Q]+Q · Ak(t)

)
−[

K−1∑
k=1

Zj,k+1 · Ak(t) + AK(t) · OUT(1)
j ]. (6.5.11)

However, since the results are not correct, by Corollary 18, for any j = 1, 2, · · · ,M ,

there is no Hj(t) for which (6.5.11) holds. Thus, V wrongly accepts only if τ is a root of

(6.5.11). By Schwartz-Zippel lemma, the probability that V wrongly accepts is bounded

above by K·D
|F| , where D is the degree of the polynomial that computes the loop body

and K is the number of executions of the loop body. If V uses Zaatar to check (6.5.9),

then the probability is bounded above by κZaatar (refer to [10], Apdx. A.2). Notice the

divisibility tests will run M times. Thus, if the results of the computation are not correct,

then, Pr{V accepts| all purported proofs are linear } < κM0 , where κ0 = K·D
|F | or κZaatar.

The probability is over the randomness of V and P in both phases our protocol.

The proof of Theorem 20 is as follows (our articulation follows [10]):

Proof. We address the general cases where maybe not all purported proofs πGj (j =

1, · · · ,M), πINi (i = 1, · · · ,M), πHj (j = 1, · · · ,M) are linear functions. We define

κ∗ = max{(1− 3δ+ 6δ2)ρlin , 6Mδ+κM0 } (where ρlin is the number of linearity tests, and
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0 < δ < δ∗, δ∗ is the lesser root of 6δ2 − 3δ + 2/9 = 0), and claim this κ∗ is the κ we are

looking for. Now, we prove our claim. It suffices to prove: if Pr{V accepts} > κ∗, then

the purported results are correct. (This statement is equivalent to the requirement for

κ.) The probability is over the randomness of both V and P in both phases our protocol.

Pr{V accepts} > κ∗ implies that both linearity tests and the divisibility tests pass

with probability greater than κ∗. Then, we know the linearity tests pass with probability

greater than (1 − 3δ + 6δ2)ρlin . If the linearity tests pass with probability greater than

(1− 3δ + 6δ2)ρlin , then the proof is δ-close to linear; this follows from results of Bellare

et al. [59, 65]; see the analysis in the extended version of [8], Apdx. A.2. Suppose

Pr{V accepts} > κ∗, then we also have Pr{V accepts} > 6Mδ + κM0 . If we exclude

the cases that any of the queries in the divisibility tests “hit” the non-linear part, the

remaining cases are those that all the queries in the divisibility tests “hit” the linear part

of the purported proofs. Let EH be the event that all the queries in the divisibility tests

“hit” the linear part of the purported proofs. Since one query in the divisibility tests “hit”

the non-linear part is δ, by union bound, Pr{EH} ≤ 6Mδ. Thus, Pr{V accepts, EH} <

Pr{EH} < 6Mδ. Since Pr{V accepts} = Pr{V accepts, EH}+Pr{V accepts, EH}, and

Pr{V accepts} > 6Mδ + κM0 , we can have Pr{V accepts, EH} > κM0 .

Then, we have Pr{V accepts|EH} > Pr{V accepts, EH} > κM0 . Since the effect of

testing the divisibility using all the queries that “hit” the linear part of the purported

proofs is exactly the same as testing the divisibility under the condition that all purported

proofs are linear, we will have :

Pr{V accepts|all purported proofs are linear} > κM0 (6.5.12)

(6.5.12) implies the purported results are correct. Otherwise, if the purported results are

not correct, by Lemma 22, we will have Pr{V accepts|all purported proofs are linear} <

κM0 , which contradicts (6.5.12).
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6.5.3 Proof of Completeness

The proof of Theorem 19 is as follows:

Proof. If P computes the result correctly, then he is able to construct the correct proofs:

πGj (j = 1, 2, · · · ,M), πINi (i = 1, 2, · · · ,M), πHj (j = 1, 2, · · · ,M). These proofs will

pass the linearity tests and the commitment tests.

Since the results are correct, by Corollary 18, there exist polynomials Hj(t) for j =

1, 2, · · · ,M such that

D(t) ·Hj(t)

=ψ
(2)
j

( K∑
k=2

Z1,k · Ak(t) + IN
(1)
1 · A1(t), · · · ,

K∑
k=2

ZM,k · Ak(t) + IN
(1)
M · A1(t),

K∑
k=1

EX
(1)
[(k−1)·Q]+1 · Ak(t),

· · · ,
K∑
k=1

EX
(1)
[(k−1)·Q]+Q · Ak(t)

)
−

(
K−1∑
k=1

Zj,k+1 · Ak(t) + AK(t) · OUT(1)
j

)
. (6.5.13)

where IN
(1)
1 , · · · , IN(1)

M and EX
(1)
1 , · · · , EX(1)

Q·K are respectively the inputs are the extra inputs

to the loop circuit, and OUT
(1)
1 , · · · , OUT(1)

M are the outputs from the loop circuit, as in

Figure 6.5. (6.5.13) holds for any τ ∈ F, namely

D(τ) ·Hj(τ)

=ψ
(2)
j

( K∑
k=2

Z1,k · Ak(τ) + IN
(1)
1 · A1(τ), · · · ,

K∑
k=2

ZM,k · Ak(τ) + IN
(1)
M · A1(τ),

K∑
k=1

EX
(1)
[(k−1)·Q]+1 · Ak(τ),

· · · ,
K∑
k=1

EX
(1)
[(k−1)·Q]+Q · Ak(τ)

)
−

(
K−1∑
k=1

Zj,k+1 · Ak(τ) + AK(τ) · OUT(1)
j

)
. (6.5.14)

By Lemma 21, following holds:

OUT
(2)
j = ψ

(2)
j (IN

(2)
1 , · · · , IN(2)

M , EX
(2)
1 , · · · , EX(2)

Q ) (6.5.15)

Then, P can always convince V (6.3.11) holds. Hence, Pr{V accepts} = 1.
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6.6 Cost Analysis

6.6.1 Amortized Cost Calculation

The amortized part includes:

1. constructing the BPs based on the “loop” circuit;

2. generating the commitment queries;

3. generating the linearity test queries;

4. generating the divisibility test queries.

5. generating the decommitment queries;

We will analyze these investments one by one.

For the first part, once the BPs are constructed, they can work over all instances of

the same “loop” circuit. Thus, it is a constant cost.

For the second part, V needs to generate the queries for the commitment phase of

the commit/decommit protocol, and send these to P . These queries are in the form of

a vector Enc(r) where r is V ’s secret. V only needs to generate one commitment query

for all layers and all instances. This query has length equal to the length of the longest

linear proof. Recall that the longest linear proof is πHj(t) whose length is K · D − K,

where K is the number of executions of the loop body, D is the degree of the polynomial

that the loop body computes. Thus, the cost of generating the commitment query is

[K ·D−K]·Enc where Enc is the cost of one encryption over the finite field F. Similarly, if

we generate the commitment query for πG, and πIN , we will introduce extra cost K ·Enc.

For the third part, V generates the queries for checking the linearity of each proofs.

(Recall that in one linearity test, V sends out queries q1, q2 and q1 + q2 and expects P

to return answers π(q1), π(q2) and π(q1 + q2) such that π(q1) + π(q2) = π(q1 + q2).)
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Suppose for each proof, V needs to perform ρlin linearity tests per iteration of the

verification. (One verification instance we run ρ iteration.) Then, V needs to randomly

generate 2ρlin queries and perform ρlin times vector addition. As in Zaatar [10], we omit

the addition part. We use only one set of queries to check the linearity of all proofs. The

cost is 2ρlin · Rand · [K ·D−K] where Rand is the cost of randomly generating a number

over the finite field F. Similarly, if we generate the linearity test queries for πG, and πIN ,

we introduce extra cost 2ρlin · Rand ·K.

For the fourth part, V needs to generate the queries qH , qG, and qIN . In every

layer’s verification, V does not need to send all these queries to P . Instead, he can

just send τ to P and P calculates these queries himself. The reason why V needs

to construct the queries qH , qG, qIN , is that he needs to construct the decommitment

queries based on these queries. We use the same qH for all πHj , the same qG for all πGj

(where j = 1, 2, · · · ,M), the same qIN for all πINi (where i = 1, 2, · · · ,M). The cost of

generating qH is [K ·D−K] ·Mult, where Mult is the cost of multiplication over the field

F. To generate qG, and qIN , it suffices to generate (A1(τ), A2(τ), · · · , AK(τ)). The cost

of generating (A1(τ), A2(τ), · · · , AK(τ)) is (Div + 4Mult) · K, according to [10], where

Div is the cost of division over the field F.

For the fifth part, in the decommitment phase of the commit/decommit protocol,

V sends P an auxiliary query which is the weighted sum of the set of PCP queries

(including the divisibility queries and the linearity test queries) and the commitment

query. Remember that for one verification instance we run ρ iterations, thus, the cost is

ρ · [2ρlin(K ·D −K) · Mult + 2ρlin ·K · Mult

+(K ·D −K) · Mult +K · Mult]. (6.6.1)
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Now, we omit the cost of constructing BPs. Since for one verification instance we

run ρ iterations, the total amortized cost is the sum of the cost from 2) to 5):

Ca =[K ·D −K] · Enc +K · Enc

+ρ · [2ρlin · Rand · (K ·D −K) + 2ρlin · Rand ·K]

+ρ · [(K ·D −K) · Mult + (Div + 4Mult) ·K]

+ρ · [2ρlin · (K ·D −K) · Mult + 2ρlin ·K · Mult

+(K ·D −K) · Mult +K · Mult]. (6.6.2)

We simplify the above into:

Ca =(K ·D) · [Enc + 2ρ · ρlin · (Rand + Mult) + 2ρ · Mult]

+ρ · (Div + 3 · Mult) ·K (6.6.3)

6.6.2 Non-amortized Cost

The non-amortized cost consists of two parts: one is the cost in each layer, including

the check and the updating; the other is the decommitment test.

Firstly, to check

OUT
(2)
j = D(τ) · πHj(qH) + πGj(qG) + AK(τ) · OUT(1)

j ,

V needs to perform 2M multiplications. Secondly, to update INi, V needs to perform

another M multiplications. Thirdly, V needs to generate EXu’s. Since the extra inputs

are changing for every computation instance, this part can not be amortized. This

cost is Q · K · Mult. Lastly, in the final decommitment test, V needs to perform the

decommitment test for 3M proofs: qHj , qINi and qGj where i, j = 1, 2, · · · ,M . For

each decommitment test, V needs to perform one decryption, one multiplication for the

divisibility test query, one multiplication for each of the linearity test queries. This

implies a cost of 3M · (Dec + Mult(1 + 3ρlin)), where Dec is the cost for one decryption
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operation over field F. Since for one verification instance we run ρ iterations, the total

non-amortized cost is

3M · Dec + ρ(6M +Q ·K + 9Mρlin) · Mult. (6.6.4)

6.6.3 Prover’s Cost

The method to construct the proof vector is the same as that in Zaatar. However, in

our design, the proof length is reduced from K ·C to K ·D. This implies the corresponding

costs in Figure 6.6.

6.7 Conclusions

This chapter addresses two fundamental problems in the verifiable computation: 1)

whether and what computations can have lower amortized cost and proof generation

cost; 2) how to handle loops concisely in verifiable computing. We give a first-step

answer by showing that for computation with loops, we can use Block Programs, our

new theoretical result, to reduce the verifier’s amortized cost to the sum of two parts,

one of which is merely verification of one execution of the loop body (which does not

scale with the number of loop repetitions) and the other is linear in the degree of the

loop body and the number of executions of the loop body. From the theory of arithmetic

circuit complexity, the degree of most circuits will be far less than their size. Hence

the verifier’s amortized costs in our design is far less than the counterpart of existing

algorithms, which are linear in the size of the whole circuit. We also improve the prover’s

cost of proof generation from quasilinear in the size of the loop body (like in Zaatar) to

quasilinear in the degree of the loop body, attached with a cost of generating a proof for

one single execution of the loop body, achieving great savings similarly.

For applications that require a large number of loop executions (which is common in

not only compute-intensive computations but also data-intensive computations such as
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big data applications), and have loop bodies the degree of which is far less than their

size (from the theory of arithmetic circuit complexity, this is nature: the degree of most

circuits will be far less than their size), our approach is expected to perform better than

existing verifiable computation protocols. However, for “deep” loop bodies, in which the

output of each gate is an input to the next gate, standard algorithms like Zaatar and

Pinocchio would probably do better.
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CHAPTER 7. FUTURE WORK: DISTRIBUTED

VERIFIABLE COMPUTATION WITH VERIFICATION

OUTSOURCING

7.1 Motivation and Problem Statement

Cloud computing is bound to become the leading trend of modern computing. Its

potential client base is extremely diverse, ranging from small businesses, trying to cut

down on their computation and storage costs, to private users trying to run computation-

intensive applications on their lightweight, hand-held devices, and to the military, trying

to opportunistically employ both trusted and untrustworthy computational resources

for quick information processing, leading to responsible decision making. In the del-

egation of computation (or computation outsourcing) paradigm, the client delegates a

computational task to the server. The client provides the server with the input of the

computational task. The server produces a result, and returns it to the client. Should

the client require result assurance, he can start a standard verification protocol, where

the server and the client assume the roles of the prover and the verifier, respectively.

The problem of delegation of computation or verifiable computation has been intensely

investigated, and almost-practical verification algorithms have been recently proposed

not only in this dissertation but also in existing work. Moreover, the idea of verification

outsourcing, first introduced in this dissertation, is bound to additionally decrease the

computational costs of the client, by outsourcing verification to a third party. Of course,

new soundness and confidentiality issues arise in this context.
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Figure 7.1 A basic scenario of distributed delegation of verification with distributed
delegation of verification.

Yet another, more challenging application of cloud computing emerges in distributed

environments, and is the focus of the current research project. While civilian applications

abound, for demonstration purposes we like to refer to a more security-sensitive example,

like the one presented by a combat environment.

Imagine a soldier squad, or a squadron of aircraft deployed in the field, acquiring,

sharing and processing information to support decision making. Since information and

(as a consequence) computational loads may easily become overwhelming (especially for

a single one of the lightweight devices carried by infantry troops), the need for distributed

delegation of computation becomes apparent. In this scenario, the squad (or squadron)

leader plays the role of the client, while all other available computation resources play

the role of the server. The available computation resources include, but are not limited

to, the computing devices carried by the squad (or squadron) members. However, in

addition to these, the local infrastructure may be used to help the computation. This

approach immediately implies a need for confidentiality. Moreover, since all protocols

are negotiated over a wireless medium, the confidentiality constraints on the delegation

of computation would also protect against undetected intrusion by malicious devices.

A basic scenario is depicted in Figure 7.1, where squad members, the local infras-
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tructure, and enemy soldiers are all part of two protocols: delegation of computation,

and delegation of verification. The local infrastructure may prove to be a computational

asset, but may not be trusted with sensitive information, while the enemy soldier will

probably attempt to interfere with the correctness of the protocol, or intelligently influ-

ence the protocol in a way that leads to maximum information leakage. Consequently

security mechanisms have to be implemented, to restrict the amount of information that

leaks to the delegates about: (a) the details of the computational task, (b) the input of

the computational task and (c) the result of the computational task. In addition, since

verification is also outsourced in a distributed manner, an additional layer of security

mechanisms should ensure that the verification protocol maintains its soundness, even

in the presence of colluding cheating or lazy verifiers.

7.2 Methods and the Key Contribution

In the future work, we aim to combine the distributed delegation of computation

with confidentiality constraints, and the distributed delegation of verification, such that

the set of provers coincides with the set of verifiers. In fact this new framework implies

only two types of actors: the client C and the multiple prover/verifiers P/V (as in Figure

7.2). We aim at keeping the computation and/or the inputs/outputs (at least partially)

confidential from the prover/verifiers. Intelligent mixing and scheduling of the delegation

and verification tasks is required to maintain the soundness of the protocol. Intelligent

mixing and scheduling would decrease the correlation between the computation and

verification tasks at each prover/verifier. This would reduce the prover/verifier’s ability

to cheat during the computation and verification processes, while ensuring that the

prover/verifier cannot recover too much information about the computation task, its

inputs and its outputs. In essence, each computation/verification assignment is masked

by other computation/verification assignments.
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Figure 7.2 Delegation of computation with delegation of verification in a simple star
topology.

The challenge is to ensure that such exposure, which is beyond the control of the

client, does not compromise the confidentiality and soundness of the protocol. Informa-

tion leakage may prove to be inevitable under particular network conditions. For these

cases, we design a mechanism that can easily detect and isolate the point where such

information leakage occurs. The following cases shall be considered under this topology:

(1) the client has the full knowledge of the topology of the network of all verifiers/provers;

(2) the client has partial or no knowledge of the topology.

The first case requires a deeper understanding of the network topology. We shall

decompose the network according to graph theory and find out critical nodes along the

verification/computation chain. Critical nodes are those that are exposed to the most

information about the computational task and its inputs/outputs. Special algorithms

will be required when interacting with the critical nodes. For the second case, a tradeoff

between security constraints and efficiency will be provided.

To summarize, the novelty of our future work can be stated as follows:

1. We propose to augment the distributed-delegation-of-computation paradigm with

distributed delegation of verification. While the confidentiality aspect of delegated

verification can be solved by an extension of the results of verification outsourc-

ing, we will introduce more efficient algorithms, that rely on intelligently mixing

the computation results and verification tasks during the verification-delegation

process.
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2. We will demonstrate, for the first time, that in a distributed environment, the same

computational resources used for performing the delegated computation can also

be used for performing the verification, in a secure and sound manner. We will

focus on a randomly-connected topology with multiple, collaborating delegation

and aggregation nodes.
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